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Chris: One thing that has us all puzzled is exactly how the ITIL/ITSM concepts fit together, 
and work with other non-ITSM concepts. There’s a lot of terminology and it seems like 
things overlap sometimes. For example, what is the relationship between a Configuration 
Item and an Asset? Also, some of what ITIL calls for is not exactly how we do business. Do 
all Configuration Items go through our data center change control process? What is the 
relationship between a Service Request and an Incident? Is a Service a Configuration Item? Is 
a Service Offering?  
 
Kelly: That’s why we’re going to turn to one of the most important aspects of enterprise 
architecture: the creation of a conceptual data model.  
 
Chris: A conceptual data model? What good is that? We’re probably not going to build 
anything – we’re going to purchase products. Sounds pretty technical.  
 
Kelly: That’s why I call it a conceptual data model, and yes, it’s very relevant even if you are 
purchasing products. There’s a lot of vendors out there selling various flavors of IT 
enablement and IT governance tools and they have a lot of overlap between their products, 
often with slightly different terminology.  
 
A conceptual data model is NOT technical – it’s really about clarifying the language 
describing our problem domain, so that we understand exactly what we mean by a 
Configuration Item and how it might relate to a Service. And this is something you need to 
put together independent of the products – because it’s going to be your road map that helps 
you determine what products you need.  
 
Chris: Will it help me translate the vendor-speak?  
 
Kelly: Absolutely. One vendor may have a “Service Catalog Entry” and an “Order,” while 
another vendor may call the same two things a “Template” and a “Service Instance” In our 
conceptual data model (which we also call a reference model) we call them “Service 
Offering” and “Service.” It doesn’t matter what the vendors call them, but you need to 
understand that any competent service request management solution should have both 
concepts. Doing the data model helps us understand our requirements better and 
communicate them to the vendor.  
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The Problem 
Process-centric thinking is a hallmark of modern business practices. IT Service Management, 
and the ITIL specification, are process frameworks. They focus on overall functional 
capabilities and the sequences of activities which add value for the customer (internal or 
external). This is well and good, and one should always start with the business process in 
such matters. However, the ITIL/ITSM movement is starting to run into the limitations of 
pure process-centricity. When one is architecting systems (defined as combinations of people, 
process, and technology) the concept of data is critical. Data has been either absent, or at best 
a second-class citizen in much of the ITSM literature and training. The consequences of this 
are clear from an enterprise architecture perspective: processes can’t be fully optimized, 
because the “things” which the processes are managing are still unclear to the process 
stakeholders. In many cases redundancy is the result: two processes may be managing the 
same thing, but calling it by two different names. Or – especially with the ITIL concept of 
Configuration Item – two very different things may be lumped inappropriately together in a 
given process context. 
 
This is compounded by the current vendor landscape, in which many vendors are selling 
overlapping products that refer to the same logical concepts with different terminology – 
sometimes, this appears to be a deliberate strategy to create the illusion of product 
differentiation where none really exists. Without a sound, product-independent data 
perspective, IT Service Management and its implementers will be somewhat hostage to 
product vendors.  

A Conceptual Data Model 
How do we gain more precision around hard-to-define concepts like “change” or 
“configuration item”? One technique used for many years is an “entity relationship model.” 
(Other terms are “conceptual model,” “logical model,” “domain model,” “ontology,” “class 
model,” and so forth.) 
 
An entity relationship model helps us clarify our language, by relating concepts together in 
certain ways: 
 

- A Configuration Item may have many Changes, and a Change may have many 
Configuration Items. (Many to many.) 

 
- A Machine may be related to an Asset, and an Asset may be related to a Machine. 

(One to one).  
 

- A Configuration Item may be a Service, Process, or Application. (Subtyping) 
 
These relationships are visually represented as follows: 
 

 or  
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Using these tools, we can start to carefully structure the relationships between the various 
loosely-used terms of IT governance: 1 
 

 

Figure 1. IT Governance information model 

                                                      
1 I use containment to indicate inheritance, and the crow's foot to indicate cardinality. At this level of 
modeling I am not concerned with composition vs. aggregation, or optionality. I use my own Visio 
idiosyncratic notation partly for convenience, and partly for intellectual property reasons. For further 
information see any book on data or class modeling.   
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Pictures such as this only tell part of the story, however. They require a detailed discussion of 
each box (or “entity”), what it means, and how to interpret the lines (“relationships”) with the 
other boxes.  
 
This is a conceptual data model. It is primarily about refining language and concepts. It 
deliberately omits a number of data structures that would ultimately be necessary to realize a 
solution.2 
 
Chris: Wow. What a picture. I’m getting a little glassy eyed.  
 
Kelly: That’s OK. Just take it a couple boxes at a time, and here are some useful reminders: 
 
First, it’s all about the language. This picture is a long way from anything we’re going to 
build; it’s here to help us understand how our project, incident, change, monitoring, 
configuration, and service management systems relate.  

Second, there’s a trick to reading the lines. Where you see an arrow  or a box 
inside a box you should read it as “Is A.” For example, an Application Is A Deployable 

Object. Where you see a crow’s foot on either or both ends  or a cross hatch 

 then you can read it as “Has” or “Is Associated With.” For example, an 
Application Has Components, or an Asset Is Associated With a Machine.  
 
Chris: That makes it easier. It’s still pretty complicated though! 
Kelly: Well, let’s go through it in some detail. 

Configuration Item & subtypes 
Configuration Item (CI) is one of the most necessary yet problematic concepts in all of IT 
governance. It must be very carefully defined and managed. Here is the ITIL specification: 
 
“Configuration structures should describe the relationship and position of CIs in each 
structure… CIs should be selected by applying a decomposition process to the top-level item 
using guidance criteria for the selection of CIs. A CI can exist as part of any number of 
different CIs or CI sets at the same time… The CI level chosen depends on the business and 
service requirements.  
 
“Although a 'child' CI should be 'owned' by one 'parent' CI, it can be 'used by' any number of 
other CIs…  
 
“Components should be classified into CI types…Typical CI types are: software products, 
business systems, system software.…The life-cycle states for each CI type should also be 
defined; e.g. an application Release may be registered, accepted, installed, or withdrawn…  
 
The relationships between CIs should be stored so as to provide dependency information. For 
example, … a CI is a part of another CI[,] … a CI is connected to another CI [,] … a CI uses 
another CI…” 

                                                      
2 The omitted data structures are generally intersection entities and dependent entities that elaborate on 
the core concepts. Process focused entities are also omitted. Some notes on possible approaches for 
elaborating this into a full logical data model are covered in the data definitions. 
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This is a very general representation, and one issue in the industry is that some vendors have 
interpreted this specification to allow their end users far too much freedom in defining 
configuration items and their relationships. More rigor is necessary. This analysis refines the 
ITIL representation and makes it more specific.  
 
A CI itself is a managed, specific object or element in the IT environment. A CI by 
definition is under change control and the RFC process. That means that certain things are 
NOT CIs, for example:  
 

- Events 
- Incidents 
- Requests for Change 
- Projects 

 
CIs may be logical or physical, deployed or undeployed, but always specific. "Oracle 
Financials," if present in the environment, would be a logical CI, containing and using many 
physical CIs (e.g. software components and datastores). A Generic "Human Resource 
Management Application" as a reference category would not be a CI.  
 
CIs have subtypes, and those subtypes in turn can have subtypes. Here is one representation: 
 

 
: 
Chris: So, I’m seeing that a Document is a CI – OK. And an Operational CI is a CI? What do 
the italics mean?  
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Kelly: The italics mean that something can’t only be an Operational CI, or a Configuration 
Item itself. It has to be something under the box with italics: in this case, a Service Offering, 
Technology Product, Asset, or something under Production CI.  
 
Chris: Why do we bother with these detailed types anyways?  
 
Kelly: It’s all about being precise. Suppose that we just had one category of CI, which 
included documents, service offerings, and contracts as well as servers and applications.  
Servers and applications can have Incidents and Known Errors – but can a Contract? Not 
really. This is basic information modeling; people can spend their whole careers specializing 
in describing data structures precisely. One of the problems of CMDBs is that they didn’t 
really take this side of things seriously at first, and so many early CMDB attempts weren’t 
successful.  
 
The major types of CIs are: 
 

� Configuration Item (base) 
� Operational Configuration Item 
� Production Configuration Item 

 
They are “nested”: 
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which means that an Operational CI is also a Configuration Item, and a Production CI is also 
an Operational CI as well as a base Configuration Item.  
 
The base Configuration Item is the master category that all CIs belong to. It is any “thing” 
in the IT environment that requires management (usually defined as being under change 
control of some sort). Also, a Configuration Item typically has an indeterminate lifecycle, 
unlike a Project or an Incident which are defined and tracked partly in terms of their closure. 
 
Configuration Items have differing levels of involvement in day to day service management 
and production processes. The base level CI includes documentation and the definitions of 
service level measurements, objectives, and agreements. Any type of CI may be involved in 
an RFC. 
 
Change control for items that are purely Configuration Items (not Operational or Production) 
may or may not be formalized – this is discussed below for the various item types. 
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An Operational CI is distinguished from the other CI types (Document and Group) as 
something involved in day to day business processes, and that can be measured and is a 
primary entity in the Service Management workflow. Changes to operational CIs (that are 
not also Production CIs) may be managed strictly by a functional group. For example, the 
Service Management group may define Service Offerings, or the Asset Management group 
may add new assets, without going through the highest-formality change processes.  
 
A Production CI in turn refines the concept of Operational CI to include the core CIs that 
may be involved in Incidents and have Known Errors. (Think data center, or production 
workstation.) Change control for production CIs is usually a formal, high-visibility process 
that is what most enterprise IT people think of when referring to “the change process.”  

Configuration Item dependencies  
 
The CI concept in this model recommends that arbitary dependencies (owns and uses)  be 
allowed only between CIs of the same type, or for purposes of grouping into manageable 
packages. Without this constraint, it would be possible for a (software) Component to contain 
a Server. Preventing such nonsense is the reason why we do logical and physical data models, 
and if your vendor or internal partners don't seem to get this issue, start raising flags. 
 
However, it is possible for any CI of a given type to depend on or own a CI of that same type. 
This is discussed in the section for each type.  
 
For further information see the section on recursive relationships.  

Logical and physical CIs 
CIs can be logical or physical. Physical in this case means no ambiguity about the boundaries 
of the CI (even if it is only transient bits on volatile storage). Logical means that some 
consensus is required to set the bounds of the CI. Applications (especially in-house built), 
processes, and services in the service catalog sense are the best examples of logical CIs. 
Machines, components, files, and network addressable Web services are physical CIs. 
Managing logical CIs is challenging and requires clearly defined process to establish the 
bounds of this potentially blurry “thing” and get buy-in that the boundaries are correct. 
 
Chris: What’s the big deal with applications and how they’re “logical”? You’ve been harping 
on that all day.  
 
Kelly: I found this diagram in some of your system literature: 
 

 
 
It’s the perfect example. Those little boxes with “dog ears” are a standard representation 
(from UML) of software components. Notice how they are named – that’s what you would 

An Operational CI 
is something 
involved in day to 
day business 
processes, and 
that can be 
measured and is a 
primary entity in 
the Service 
Management 
workflow. 

Applications 
(especially in-
house built), 
processes, and 
services in the 
service catalog 
sense are the best 
examples of 
logical CIs.  
 
Machines, 
components, files, 
and network 
addressable Web 
services are 
physical CIs. 



A data architecture for IT Service Management 

 Page 8 Copyright © 2005 Charles T. Betz 

actually see on the servers supporting the application. The functionality as a whole is named 
Quadrex; that’s how you refer to it in meetings and in the halls – but there is really no such 
thing, as far as your computers are concerned.  
 

CI Group 
Configuration Items require grouping for various reasons, such as supporting a Release or a 
Service Request. The CI Group leverages the Owns and Participates relationships to support 
this. 

Document 
A Document may be a Configuration Item if its existence and content are significant enough 
to IT service delivery to warrant formal change control. It may apply to any CI or CI Group. 
There are of course many other types of Documents, and not all are under change control 
(which makes them not Configuraton Items.) Another major class of Documents that are 
usually under change control are project documents. However, this change control is usually 
at the project level and ITIL specifically avoids discussing it. 

Contract 
A Contract is an agreement between two Parties with authority in the overall IT service 
context. A Contract may enumerate several formal Agreements, based on objectives for 
Measurements of Configuration Items. Contracts are often the subject of intense scrutiny, and 
their signing is (or should be) a very visible event. However, usually a Contract Management 
Office performs this particular type of change control, and it is not part of the mainstream 
“change process” as generally understood in most IT organizations.  

Measurement 
A Measurement is a defined, specific characteristic of a Configuration Item. Specific should 
mean countable or otherwise deterministically translatable into some form of scale or 
categorization. This conceptual entity encompasses both the definition of the measurement as 
well as implying its specific instances. A Measurement is meaningless without the context of 
a CI. Measurements have objectives as an associated concept (not shown in the model.) 
An objective is with respect to a Measurement – what the measurement ought to be. This 
specifically supports the concepts of Service Level Objective and Operational Level 
Objective, where a service provider may have informal service targets that are not the subject 
of an Agreement. A Measurement definition is a Configuration Item because it represents the 
criteria on which IT service performance is measured.  

Agreement 
An Agreement is between two Parties with respect to a Service Level, Operational Level, or 
some other aspect of a Configuration Item. A Contract may have many Agreements.  
 
Chris: OK, how does this all fit together? Document, Contract, Agreement, Measurement? 
Seems a little elaborate.  
 
Kelly: Let’s walk through a couple cases.  
- an email service where you are guaranteeing 2-day turnaround on 95% of email 

requests on average, as an SLA to the client.  
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- A consolidated database farm where you are guaranteeing 99.995% uptime as an 
OLA to your application teams 

 
The email account provisioning is a Service Offering, and each account request is a Service. 
Both are CIs; therefore they can both have Measurements. The Measurement for the Service 
Offering might be “Aggregate % Turnaround in Days.” Each individual Service has 
associated workflow that tells you the request date/time, and the completion date/time. Those 
measurements are aggregated into the overall Service Offering measurement.  
 
The Objective for that Measurement might be “<= 2 Days for 95%.” (There are precise ways 
to represent this so that a service management application can precisely calculate it.) 
However, that Objective is just an informal stake in the ground until it is the subject of an 
Agreement between two Parties. And as we all know, if those two parties are within the 
service provider it is an Operational Level Agreement; if one is the client and one is the 
service provider it is a Service Level Agreement. That particular SLA might be part of a 
broader Contract specifying all aspects of the relationship between client and provider. That 
Contract in turn is a Document and therefore a CI – one would hope a contract is under 
change control! But again, is it managed by exactly the same processes and systems that 
handle the deployment of software in a data center? Perhaps, but probably not.  
 
Chris: What about the database farm? 
 
Kelly: That’s simpler. Let’s assume it’s a non-orderable service (it was purpose built for a 
suite of applications and no more databases will be hosted there). The only thing different 
from the email case is that it’s not a Service Offering; the measurement is on the Service. 
Aggregation is still necessary at a technical level, however, and that’s where you get into the 
relationship between the Service Level Management capability and the lower level 
monitoring architecture.  

Operational CI 
An Operational CI refines the base CI concept by including things that are measurable3, 
which includes Service Offerings, Technology Products, and Assets. Operational CIs also are 
directly involved in the day to day provision of services, while the documentation-oriented 
base CIs are not. 
 
Some Operational CIs are also Production CIs and will be described below. The Operational 
CIs that are NOT production CIs are Service Offering, Technology Product, and Asset.  
 

                                                      
3 Note that the Measurement entity is the definition of a measurement, such as “transactions per 
second,” “average response time,” or “downtime.” Such definitions are not themselves measurable – 
think about it. But they might well be under change control as a basis for contractual agreements. 
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Operational CIs are under change control, but it is a different kind of change management 
dependent on their specific lifecycles. A Service Offering goes through a different process 
than a change to a production application server. While ITIL implies that CIs all participate in 
a generalized conceptual RFC process, the reality is that they might not leverage the high 
visibility change control process which is usually focused on the production data center.  
 
For example, a new Technology Product will probably go through some sort of adoption and 
certification process, perhaps led by key stakeholders for that given technology domain. But 
it probably will not be a subject of Change Advisory Board discussion, unless that CAB has a 
broader scope than usual.  

Asset 
An Asset is a financial concept. It shows up on the company’s balance sheet and may be 
depreciable. The “Asset” concept is often one to one with Machines and Applications. 
However, a Machine may or may not also be an Asset.  
 
Chris: Alright, you got me. When is a Machine not an Asset? It can be on the loading dock 
and it should still show up on our books.  
 
Kelly: Remember when we signed the deal with Nexatel? Part of the arrangement was that 
they would locate two of their management servers in our data center. Stuff like that happens 
all the time nowadays. We track those servers as CIs; they are attached to our network, 
mission-critical, and we even pull data off of them. But they aren’t ours and don’t show up on 
our balance sheet. 
 
For Software, the Asset is more or less equal to the software license. There is little or no 
industry consensus as to whether to call in-house built systems “assets.” Generally this is not 
done, but there’s increasing awareness that they need to be managed as a portfolio – what 
relationship this portfolio management concept has to formal Asset Management is to be 
determined. Certainly, some of the background and orientation of experienced Asset 
Management staff would be valuable to the IT Portfolio Management objectives. Will Asset 
Management ultimately be seen as a subset of IT Portfolio Management? 
 
 Assets should have asset tags and formal IDs, and should not be tightly coupled to serial 
numbers – cases have arisen where serial numbers change but the asset remains the same, for 
example if the serial number is tied to an assembly that is field-replaceable or is replaced 
under special circumstances, such as a server frame or motherboard.  

Technology Product 
A Technology Product is another name for the combined Definitive Software & Hardware 
Libraries (or at least their data indexing). The concept of Technology Product is crucial for 
enterprise architecture and vendor management. A well-defined Technology Product 
database, with mappings to the specific Applications and Machines that are dependent on 
those products, enables tracking the enterprise’s status with respect to product obsolescence, 
security issues, vendor support, and overall technical roadmap. It also helps in program 
estimation and is an input into non-functional drivers of IT cost. 
 
Chris: Non-functional drivers of IT cost? You lost me there… 
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Kelly: We understand when the business comes and asks us to build something. Where we 
fall down is when (Oracle CEO) Larry Ellison decides to stop supporting Oracle 8, for 
example. Our business clients typically don’t have any awareness of such shifts in the product 
landscape, but it’s a really big deal for us – we either have to go without support, pay an 
expensive (and less-qualified) third party for aftermarket support, or re-test all our software 
on Oracle 9. Our business clients wish that these kinds of costs would just go away, but it’s 
not that easy. 
 
The thing is, we knew 18 months or more in advance that Oracle 8 was going off support. We 
were kind of in denial about it, partly because we didn’t have a good handle on our exposure. 
Now, with a complete understanding of the technology stacks underlying our apps, we know 
exactly what our exposure is when Oracle 9 goes off support in 2007 – we’ve got 3 big 
packages and 4 smaller applications, and we’ve already got the funding identified in our long 
range plan.  
 
And don’t even get me started on the Windows server patching costs – but again, with our 
mapping of Technology Products to Applications and Machines, we have a much better 
handle on our exposure there as well. We know that every 30 days we have to allocate 1 FTE 
per 10 servers for a week to patch and reboot, and we are able to notify those application 
teams systematically as we do that. Much better customer service.  
 
Note that Technology Products may include both hardware and software. It is difficult to 
make a distinction between the two in the purchased product space, as many 
purchasable solutions include both, with some level of independence (think of a Cisco 
Router with its upgradeable firmware, or a turnkey materials management system based on 
IBM iSeries [AS/400] computers).  

Service Offering 
A Service Offering is a defined entry in the enterprise service catalog. It is a measurable and 
specific offering of the IT organization to external clients. It should be seen as a “logical 
API”4 of the service provider; everything under it (in theory) may be opaque to the service 
consumer. A service in this sense is not a specific technical offering like a Web service; a 
specific Web service would be a Component and would be linked to the Service entity.  
 

                                                      
4 Application Programming Interface. This is a key concept to object and component oriented 
development; major characteristics of a computer program or module are encapsulated behind a 
defined set of gateway operations. The idea is that 1) the only way to access the program’s 
functionality is through the interface and 2) it is no concern of the user how the program does its job; it 
can be radically revised as long as the interface still exhibits the same behavior. This is a perfect 
analogy for Service Offerings and Services. To carry it further: the Service Offering is the API 
definition, while a Service is a particular invocation (sometimes very long-running – the metaphor is 
not perfect) of the API.  
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products.  
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A Service Offering is not a Service. The Service Offering is a template, an item type – but it 
is not the Item. One Service Offering may result in many actual Services; in other cases, a 
Service may not even have an Offering (it is a non-orderable service). However, an Offering 
with no ordered Services is like a poorly-selling retail product; its reason for being is clearly 
in question. 
 
Examples of service offerings might be: 
 

1. Provision new user with a workstation 
2. Set up new email account 
3. Set up new user in HRMS system 
4. Complete bundle of 1, 2, and 3. 
5. Provide wide area networking to new remote store. 
6. Provide new tech stack instance to project (e.g. J2EE standard container and Oracle 

database). 
 
Service Offerings in some cases will reference single or multiple Technology Products which 
may be composed of other Technology Products (a common term is “stack.”) For example, 
one service offering may be “Enterprise Java application hosting using Weblogic 8.0 and 
Oracle 9i, with high availability.” The overall stack might be called “HA Enterprise Java with 
RDBMS,” with dependencies in turn on Weblogic 8.0 and Oracle 9i and the necessarily 
server infrastructure to enable HA.  
 
There is risk of making Service Offerings and Services too granular. A distinguishing feature 
of any Service Offering is that it must have a quantifiable price. (Not all Services must 
have a price, however.) 

Service – Service Offering 
A Service Offering may have many Service instances. See the Service discussion below. 

Production CI 
A production CI is where the rubber meets the road. It’s something that’s directly involved in 
the day to day delivery of IT services, and whose failure or compromise would have an 
identifiable impact. Production CIs are best thought of as the data center and all its 
components, the networks, and the production workstations attached to those networks. A 
Service is itself a production CI, a high-level logical one that serves as a sort of interface by 
which the end user interacts or gains value from the complex underlying IT infrastructure. 
 
The concept of “production” can be a little paradoxical. As the development lifecycle gets 
more and more mature, one can see developer’s workstations and lab servers as “production” 
servers supporting the business process of software development. A true non-production 
status increasingly must be reserved for pure “sandbox” R & D machines being used to 
evaluate products and technologies. A developer workstation being used to develop assets 
upon a standard, proven Java/Oracle technology stack, to tight timeframes and deliverables, is 
a very different thing from a prototype workstation brought in to demonstrate the viability of 
a new 64-bit architecture, or experiment with a new encryption product. 
 
Production CIs are often logical (Service, Process, Application). This makes them no less 
important. Managing the logical CI is one of the most challenging aspects of configuration 
management; a clear approval and publication process is required.  
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Production CI – Event 
One distinguishing feature of a Production CI is that it is the only CI type that may raise a 
monitored Event. Almost without exception, only physical Components, Servers, Machines, 
or Datastores can raise events. 

Production CI – Incident 
Another distinguishing feature of a Production CI is that that is the only CI type against 
which an Incident can be registered. Incidents can be against logical CIs (e.g. Application), 
either through a Service Request or through event correlation.  

Production CI – Known Error 
Another distinguishing feature of a Production CI is that that is the only CI type that may 
have a Known Error. 

Service (and the Service-Application relationship) 
A Service is an instance of a Service Offering. Where the Service Offering may be “Provide 
email to new user” the Service is “Provide email to Peter Baskerville,” accompanied by the 
various workflow steps documenting the provision of that service from start to finish.  
 
Services do not depend on automation. The IT organization may provide a purely human-
based Process with no Application involved; it may provide a service based strictly on the 
availability and performance of an Application, or finally it may be both – a Service based on 
the human execution of a Process backed by automated Applications. 
 
The Service aspect of applications is distinct from services focused on provisioning end 
users. Provisioning end users results in many Services for one Service Offering:  
 

 
 
Service Offerings often require average turnaround times as part of their SLA (e.g., provision 
email within 48 hours.)  
 
However, the following are Application services: 
 

- Maintain the Quadrex system up with 99.99 availability over 12 months, and 99.995 
availability during the peak season.  

- Complete the X-time batch by 8:00 am every weekday morning 99% of the business 
days.  

A Service is an 
instance of a 
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Another emerging term for Application services are non-orderable services. This means that 
while they are measured, they are not requested5. Their ongoing maintenance is assumed and 
may be the subject of service-level agreements, but those service level agreements are not 
based on workflow (e.g. speed of request fulfillment) – they are based on measured behavior 
of the non-orderable service (e.g. availability). Non-orderable services do not have a Service 
Offering entry. Note that for comprehensive service level management, both Service 
Offerings and Services need to be tracked. 
 
An Application may play a part in supporting service offerings, especially with respect to 
provisioning: 
 

 

Process 
A Process is a defined set of tasks, usually executed in sequence, that results in a specific 
business objective (according to process guru Michael Hammer, it must “provide value for 
the customer”). Processes should be managed as distinct CIs with clear names, identities, and 
lifecycles; formalizing their management is a major challenge today and current reality in 
most shops is a very informal process portfolio based on undocumented group consensus. It is 
a hierarchical concept with much ambiguity around granularity; there are various hierarchies 
such as Workflow/Task/Step and so on. Formally managing a process portfolio results in the 
interesting meta-question, guaranteed to glaze the eyes of executives: "what is the process to 
manage the processes?" (Something like "what is the data about the data?) 

Process-Application 
Processes are supported by Applications in a many to many relationship. For example, the 
pricing process at a large retailer may involve a merchandising system and a point of sale 
system, provided by different vendors. The merchants set the prices, which are then 
replicated down to the point of sale terminals. Value is not derived from the process until it 
runs from end to end, so we have one process depending on two applications.  
 
Similarly, it is common for one application to support two distinct processes, such as a CRM 
system that supports both operational customer interactions as well as analytic planning 
purposes.  

                                                      
5 Or to be precise, they are “ordered” through the demand/program/project lifecycle. A current debate 
in IT Service Management is the blurry boundary between discrete atomic services such as “Order new 
workstation” and project-based “time and materials” requests such as “Build a new application.”  
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Process is the fundamental unit of management for the Business Process Execution Language 
(BPEL) spec. For further information see the literature on Business Process Management.  

Application 
An Application is a logical grouping of software components. Technologists may liken it to a 
"namespace." It is a consensus concept and must be carefully crafted so it is not too abstract 
or granular. Some rules of thumb that may be useful: 
 

- An application should be recognizable to a senior business manager.  
- Applications should be assigned to financial management structures. They should 

have clear executive ownership.  
- An application usually will have been the sole product of a project, but subsequent 

projects may be managed to enhance it. (Not all projects result in the creation of an 
application.)  

- All physical binary software components should be owned by one and only one 
logical application (i.e. as a namespace).  

- Databases are not necessarily owned by any one application, however. 
- Applications should have a unique and distinct human readable identifier, ideally a 

three or four letter acronym. All Configuration Items that are owned by the 
application should be named using that identifier as a basis for a naming standard.  

- The same application may have different names in the organization; therefore an 
aliasing capability is essential to manage the portfolio and eliminate redundancy 
while supporting legacy terminology.  

- Applications in this model are specific instances. If an organization has two instances 
of Oracle Financials (e.g. for two different operating companies) supported by two 
different support teams, that should be two entries in the portfolio. Oracle Financials 
would also have one record as a Technology Product.  

- If no-one wears a pager for it, it is not an application. Applications should be part of a 
Service. If an Application is not part of an identifiable Service, it might be a 
Technology Product instead. For example, if an IT shop uses Websphere Application 
Server for multiple different applications, Websphere itself might not be in the 
application portfolio - it would be a Technology Product (possibly part of a stack) on 
which Applications depend. However, if a shared Websphere service is managed as a 
unitary entity with an SLA by an infrastructure team, then that should be in the 
Application portfolio.  

- Applications support Processes and Services (many to many). This triad of many to 
manys is a complex structure and needs to be refined to reflect an organization's 
culture and practices.  
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The application portfolio is probably the most important set of Configuration Items to 
baseline when an ITSM initiative is moving into the data center & production IT. Many 
CMDB initiatives fail because they attempt to start with the concept of physical binary 
Component, which (while it is straightforward to harvest from servers) is too granular and 
hard to manage for most organizations. The logical concept of “application” provides a key 
bridge between the overwhelming details of the technology and the business drivers it 
supports.  
 
A defined process must be implemented for identifying that something is to be tracked as a 
formal "application." and one practice that is known to work is requiring consensus between 
an enterprise architect and an IT line manager that something should be assigned an 
application identifier, and included in the portfolio. Proliferation of application IDs (which 
can happen if a non-architectural, technical team is allowed to assign them) is a bad practice, 
as it prevents the correct rollup of IT operational data into larger hierarchies for scorecard 
reporting.  
 
Application IDs should be visible on all CIs where appropriate, in particular on Web pages 
and other graphical user interfaces. There is currently a problem in the industry with 
inaccurate CI identification; users do not necessarily know what application they are even in! 
Firm labeling standards for all application interfaces would be a big help. This is nothing 
new; on older mainframe greenscreen systems the system and screen ID would typically 
appear in a corner. New distributed systems with less rigorous GUI development standards 
were a step backward in this concern. 
 
Applications have varying types. A typical taxonomy might include: 
 

- Business Application: production, transactional, business or customer facing 
- Infrastructure Application: production, not directly business/customer facing 
- Decision Support Application: based on a data warehouse/enterprise reporting 

infrastructure 
- Desktop Application: productivity applications such as MS Office 

 
For further information see the literature on Application Portfolio Management. 

Application - Component 
Applications contain Components. For accountability, all Components should be owned by 
one and only one Application (although they may be used by many).  

Application – Datastore 
Applications are collections of processes and algorithms at their core. They are dependent in 
turn on datastores such as RDBMSes or flat files. Application to data dependency is one of 
the most important dependencies to maintain for CIs in the data center; many organizations 
spend considerable resources continually re-analyzing this dependency. One immature 
approach is to simply document the dependency of an application on a database server 
(without specifying catalog or database); however, database servers are frequently large 
shared assets and the database administrators need to know exactly which database is 
serving an application. (This is also needed for regulatory compliance.)  
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Application – Technology Product 
Applications depend on Technology Products. The distinction between the two is subtle but 
absolutely crucial. Bear in mind that Applications are real, running instances. People wear 
pagers for applications, they figure in SLAs, may have Incidents, and so forth. Technology 
Products show up on invoices and contracts, and the complete list of software Technology 
Products is the Definitive Software Library. 

On the relationship between Project and Application 
A sign of an immature IT enablement environment is when Projects are confused with 
Applications. Projects have a defined lifecycle, typically measured in months. Applications 
have an indeterminate lifespan, typically measured in years. One Application is usually the 
subject of multiple Projects; the first Project creates and deploys it, and subsequent projects 
enhance it. It remains the same Application throughout, unless a conscious decision is 
taken to manage a major new version as a distinct new Application. There are various 
approaches here; the important point is that they be managed and agreed to.   
 
The relationship between Project and Application in the model is mediated through Release: 
 

 
 

This is a purist approach, and it may be desirable for your IT enablement tooling to simply 
relate Project and Application – there’s quite a bit of value there, even if you haven’t sorted 
out Release yet. For example, if an Application has a known Risk having to do with 
regulatory compliance, the Project making changes should be held to high standards for 
process adherence and software quality. That kind of focused emphasis is difficult to achieve 
consistently without a rich and well managed IT enablement system that clearly distinguishes 
between Application and Project.  

Component 
A Component is a physical piece of executable code. Even though it is only magnetic bits and 
bytes, it is common practice to call a component “physical.” Calling it “physical” in this 
context means that there is no disagreement as to what and where it is; components are non-
ambiguous assets that can generally be objectively inventoried without debate as to their 
boundaries. 
 
The use of Component here is not in a pure OO sense. In the OO world, a Component also 
has a well-defined interface which encapsulates its behavior and provides an effective 
contract for anyone who chooses to use it. However, Component as defined here applies to 
any piece of executable code, regardless of whether it has an interface.  
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Components inherit from Applications and therefore can be related to Datastores and Deploy 
Points. However, doing dependencies at this level for the general case of a large enterprise IT 
organization is usually not practical given current industry practice – the objects and their 
dependencies would quickly amount to millions, and the information might not even be 
available in many cases (e.g. packaged software). Instead of inventorying all the detail of 
components, some configuration management approaches focus on overall integrity checks 
across large blocks of storage (e.g. checksums). In such cases the Deploy Point becomes the 
fundamental CI to manage. 
 
Capturing component level dependencies is a recommended best practice for all aspects of 
enterprise application integration.6 
 
A Web Service, shared object, or other similar addressable, distinct piece of functionality in 
this model is a Component – not a Service! This is quite a point of confusion due to the 
overloading of the term “Service.” 

Datastore 
A Datastore is a distinct, addressable source of data, usually structured. The most common 
examples would be database catalog and flat file; message queues may also be represented 
here. A Datastore should have one and only one data definition. As a deployable object it is 
directly dependent on servers and their underlying machines.  Note that as a CI it can depend 
on and contain other Datastores. Again, generalized CI containment is frowned on in the 
model – we don’t want Datastores containing Machines! 
 
Datastores should have data definitions, which are by definition metadata – data about the 
data. The data definition tells you whether a given Datastore contains customer or supply 
chain information. Metadata generally is another term for everything we represent in our data 
model.7  

Server/Workstation and Machine 
It is crucial to have a precise definition of “server or workstation” and “machine.” 
Server/workstation is an operating system instance, almost always networked. Machine is 
a physical computing device which can be equated to an Asset. One Machine may host 
multiple Servers (virtualization and partitioning), and one Server may be hosted by 
multiple Machines (failover and load balancing). Server is the bits and the process; 
Machine is the atoms and the serial number, linked in turn to the Asset tag. 
 
The current failure of common Asset Management solutions to recognize this distinction is an 
industry problem.  

Deployable Object 
A Deployable Object is either a physical Application or a Datastore. This based on the 
fundamental computing theory distinction division between algorithms and data structures. In 
modern distributed systems, both have identifiable physical locations in a directory structure 
or analogous storage location.  
                                                      
6 See Integration Competency Center, John Schmidt and David Lyle (Informatica 2005).  
7 I considered adding “Metadata” to the data model as a subtype of Document. There are some 
fascinating, frustrating hall-of-mirrors issues in considering Metadata itself as a CI. Decided not to go 
there.  
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Deploy Point 
A Deployable Object is tied in turn to a Deploy Point, which is usually a file system directory 
but might also be a management infrastructure such as a queue manager or a relational 
database management system.  
 
The concept of Deploy Point as a major type of Configuration Item is an innovation proposed 
in this analysis, and comes from the author’s experience with configuration management and 
supporting an Integration Competency Center. There are several major reasons for this: 
 

- The need to identify “root” management concepts to facilitate interaction between 
infrastructure and applications teams.  

- The sensitivity of certain directories when used as exchange points for moving data 
- The need to manage RDBMSes and message queuing managers, which don’t sit 

comfortably as “Applications.” 

The application root directory 
A large, complex application may have dozens or hundreds of directories, in some cases 
appearing and disappearing dynamically. However, it’s a best practice to constrain the 
application’s scope of activity to one master directory which serves to contain the myriad of 
sub-directories used by the application. This one master directory is a key interaction point 
for the infrastructure team managing the server and the application team (assuming that the 
IT organization has moved towards the best practice of segregating these teams and getting 
the application teams out of the business of server management.) 
 
Shared libraries complicate this arrangement, but multiple applications updating shared 
libraries has been proven to be a very bad practice in Microsoft Windows, so hopefully the 
root directory concept will continue to gain strength as a management approach. This touches 
on core computing issues around component re-use and operating system services and 
architectures, and will never be a simple matter.  

The shared exchange directory 
A frequent, if problematic, design pattern in integration architectures is the shared directory. 
This is a directory typically in which one application deposits files, and another picks them 
up for further processing or to consume their information.  
 
The trouble with shared directories is that often the consuming application will be built with 
logic that states “Do X for all files in the directory.” Thus, if an unexpected file is placed in 
the directory, unexpected results may occur. (An architecture of this nature resulted in the 
complete failure of the replication feed for all pricing data at a major retailer, costing many 
hundreds of thousands of dollars and spurring an interest in configuration management.)  
 
Shared directories which facilitate application interaction are therefore important points of 
control and need to be treated as Configuration Items. 

IT Governance entities 

Service Request 
A Service Request is a logged interaction between an individual and the Service Desk 
requiring followup. Service Requests may have various Types such as: 
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- Hardware/Software Request 
- Incident Report (i.e., the request is “Resolve this incident”) 
- Configuration Change Request 
- Security Request 

 
and so forth.  
 
A critical distinction is that between Service Request and project initiation. The service 
management architects will need to pay close attention to the differences between Service 
Offerings that may be straightforward products, Service Offerings that are more open-ended 
(analogous to professional services or consulting), and work requests that should not be 
framed as Service Requests at all but should be routed to a project initiation process. 
Alternatively, one might view the gateway into the project initiation process as a Service 
Request and drive to a more generalized approach. 

Program 
A Program is an ongoing, large-scale organizational commitment and corresponding 
investment towards meeting a major goal or objective of the enterprise. A Program typically 
consists of one or more Projects.8  

Project 
A Project is a defined set of manageable activities to achieve a well-specified mission, with 
explicitly allocated resources (time, money, staff), executed and measured within the scope of 
those resources. Projects may (or may not) be part of larger Programs. A Project has one or 
more Releases. 

(Request for) Change 
A Change is a work order or authorization to alter the state of some Configuration Item. 
Changes, like transactional logical units of work should be  
 

- Atomic 
- Consistent 
- Isolated  
- Durable 

 
(For further information on the ACID model see any text on transaction processing.) In the 
context of enterprise IT, an atomic change is “all or nothing;” either the change goes in and 
succeeds, or it is rolled back completely. If a change might have some functionality that 
would be rolled back, while other functionality would stay, it should actually be framed as 
two changes. (Note that ITIL does allow for “partial rollback” but clearly indicates this is 
non-preferred.) 
 
A Consistent change means that the functionality, when deployed, leaves the system in a 
stable state. Old functionality no longer needed by the new version of the system should be 
removed as part of the change. New functionality should integrate seamlessly with the 
previous functionality without undesired or unexpected impact.  
                                                      
8 It is possible to model higher level planning concepts such as Mission, Objective, Goal, Risk, 
External Driver, and so forth. This was not attempted in this analysis.  
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An Isolated change means (in theory) that it can go in without impacting other changes or 
major system functionality. This would be very hard to achieve in all cases, but is 
nevertheless something to strive for. Achieving logical isolation of changes is a goal for an 
integrated release and change management process.  
 
A Durable change is one that, once executed, is stable and permanent; all instances of the 
new software in all deployment locations persist, and older software is not inadvertently re-
installed (e.g. during a system restoration process). This requires attention to the Definitive 
Software Library.  

Change-Release 
A Release may have a number of Changes associated with it, but a Change should only apply 
to one Release.  
 
A Release usually affects multiple CIs; however, CIs can be grouped together. This is the 
purpose of the CI Group, which can (at least) have types of Release Group and Technology 
Stack.  

Change-CI 
This is perhaps the most important relationship in all of IT Service Management. Very 
simply, a Change by definition affects CIs, and CIs are objects under Change Control. This is 
far simpler to state and to model than to execute in the real world. A naïve approach to 
implementing this concept will result in unmanageable data. Clearly, it is not optimal for a 
Change record to have to be related to 1,500 individual Configuration Items, yet this is what a 
simplistic approach will arrive at (e.g. in putting in an initial release of a major software 
package with many separate binary assets).  
 
There are various techniques for mitigating and simplifying this, mostly involving 
encapsulation and abstraction. If a logical Application CI is defined, for example, it can be 
presumed to include all lower-level physical binary changes. Whether or not to inventory 
those binaries in the CMDB at all is one of the most critical approach decisions the ITSM 
implementer faces. For high security organizations, this may be done, but it is questionable if 
lower-criticality IS organizations truly require it, especially in a world of purchased software 
where the physical architecture of a software product is less and less a concern for the 
package vendor’s customers. 
  
Alternatively, the concept of CI Group (which is also a CI) can be used. An Application plus 
its Datastores and Deploy Points might be a logical CI Group. This is where the issue of 
Logical versus Physical CI comes in, pointing up the importance of having a defined process 
for maintaining logical Applications and other forms of CI Groups. It is not recommended to 
allow individuals the ability to create high-visibility logical CIs; this results in a chaotic 
environment. Everyone must agree that there is one application (e.g. Quadrex), composed of 
(e.g.) these 50 components.  

Change-Incident 
A Change may be in response to an Incident, without going through the more formal and 
heavyweight Release process. Alternatively, an Incident might be the result of a poorly 
executed Change. This means that the intersection entity resolving Change-Incident should 
probably have a Type attribute, so we understand which caused which.  
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Production change and the software development lifecycle 
RFCs in this architecture, and the concept of Change more generally, are not applied to 
project deliverables, in keeping with the ITIL philosophy that  
 
“changes to any components that are under the control of an applications development 
project - for example, applications software, documentation or procedures - do not come 
under Change Management but would be subject to project Change Management 
procedures…Change Management process manages Changes to the day to day operation of 
the business. It is no substitute for the organisation-wide use of methods … to manage and 
control projects.” 

Release 
Release is the gateway from the software development lifecycle into the IT Service 
Management world. It is one of the most important concepts for which to develop an 
enterprise approach. A Release is (narrowly defined) a distinct package of new functionality 
deployed to production, usually enabling new capabilities and/or addressing known 
Problems.   
 
ITIL says “a Release should be under Change Management and may consist of any 
combination of hardware, software, firmware and document CIs … The term 'Release' is used 
to describe a collection of authorised Changes to an IT service.” 
 
Releases, like Changes, should be transactional, although their larger grain makes this more 
challenging. 
 
The concept of CI Group may be helpful in supporting a Release’s various elements. 
 
Note that Release Management as an overall capability includes the planning and 
harmonization of all Releases in the environment, not just managing Releases for an 
individual Project or Program (the enterprise Release Managers should interface with the 
program/project Release Managers).  

Event 
An event is raw material. It is any operational signal emitted by any production CI. Only a 
very small fraction of Events are meaningful to IT Service Management, and an even smaller 
fraction result in Incidents. Events are the raw material of Measurements, which in turn drive 
Agreements and Contracts. 

Incident 
ITIL defines Incident as “any event which is not part of the standard operation of a service 
and which causes, or may cause, an interruption to, or a reduction in, the quality of that 
service.” ITIL also implies that a Service Request is a type of Incident, which seems perverse 
(a Service Request might be for new capability, in which case it is not an interruption unless 
you are trying to build a culture of hostile customer service!) This line of thinking is not 
supported in the metamodels – ITIL editors please take note.  
 
Service Requests may be tied to Incidents via the Configuration Item against which the 
Incident is reported. In this interpretation, Incidents are independent of their mode of 
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detection; this is necessary to support Incidents that may be detected through enterprise 
monitoring without ever being reported through the centralized Service Desk.  
 
To refine this further, it seems that an Incident has to also be experienced by a person. (If a 
tree falls…). This distinguishes it from the Known Error concept used for knowledge 
management for the help/service desk (an Error being a known condition in the abstract).  
 
A Service Request may be in respect to an Incident. Incidents (especially when generated 
from monitoring tools) often require correlation and root cause analysis, which are supported 
through the recursive relationships9 relating Incidents and Events to each other.  

Problem and Known Error 
In ITIL, a Problem is “the unknown underlying cause of one or more Incidents” while a 
Known Error is “a Problem that is successfully diagnosed and for which a Work-around is 
known.” However, this leaves a rather large hole for problems with known underlying causes 
that nevertheless have no workaround, so the ITIL spec won’t do as a data definition. A 
Problem is generally a (known or unknown) root cause of many Incidents, although in the 
current model it is possible for an Incident to be caused by several Problems as well.10 
 
ITIL further states that “A Problem can result in multiple Incidents, and it is possible that the 
Problem will not be diagnosed until several Incidents have occurred, over a period of time. 
Handling Problems is quite different from handling Incidents and is therefore covered by the 
Problem Management process.” 

Problem – Release and Problem – RFC 
Problems may be addressed by Releases, which might solve multiple Problems. An 
individual problem might also be addressed by one or several RFCs. It is a possible best 
practice that Problems are generally handled by Releases, while Incidents are handled directly 
by RFCs. Ideally, an RFC should be able to reference both Incidents (tactical) and Problems 
(longer-term). This will depend on the capabilities of Incident Management and its degree of 
integration with Problem and Change.  

Risk 
A Risk is a known possibility of adverse events, usually described by 1) likelihood of 
happening and 2) cost of occurrence. Risks are best seen as directly applying to CIs; a 
deficiency of modern risk management software is that it is often designed in a vacuum, with 
the risk management team entering their own representations of configuration items such as 
Application and Process, and not looking to a common system of record for this critical 
reference data.  

                                                      
9 See below for detailed discussion on recursive relationships. 
10 Comments appreciated: should the model restrict Incidents to only having one Problem? 
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Cross cutting data architecture issues 
 
Metadata, or IT configuration management data (this architecture sees them as synonymous) 
presents unique problems compared to the data that IT manages on behalf of its partners. 
Financial, logistics, and HR data has deep roots in paper-based history; a purchase order or 
hiring authorization message can be traced directly back to its roots in the forms once routed 
by interoffice mail to in baskets throughout pre-electronic corporations.  

Recursive relationships 
The “recursive relationship” is a common occurrence when managing IT data.  
 
When one looks at a sales journal, or a stack of purchase orders, one generally sees 
consistency: the data model is the same for all the information.  
 

 
 
 The data also has limited interconnections. A purchase order may reference common 
employee lookup tables and product tables, resulting in data models that are relatively 
straightforward to understand: 
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With metadata, everything gets much more complex. Data metadata is the most tractable; 
tables (or entities) have columns (or attributes) and therefore building simple data dictionaries 
is straightforward. But when one moves beyond this into technical metadata (i.e. 
configuration management) the data starts to take on new characteristics. In mathematical 
terms, it becomes graph-based; that is, it looks like this: 

 
 
This kind of data presents well-known problems in storage, querying, and presentation, as it 
requires "any to any" data models and can rapidly become complex to the point of 
incomprehensibility.  
 
This kind of data is not typically encountered in business-centric systems that are the 
successors to forms-based paper processes. It is the kind of data stored by configuration 
management databases and metadata repositories when they move into managing technical 
metadata such as interconnections between network devices, integration flows, and so forth.  
 
The recursive relationship enables complex data. This is a relationship when one type of 
thing can be connected to other instances of the same thing. There are two major types of 
recursive relationship:  
 

- tree  
- network 

 
The tree relationship is a relationship where one thing “contains” other things. A taxonomy is 
a tree; so is a hierarchy. Common examples of trees in IT Service Management are 
Configuration Items containing other CIs; organization hierarchies; process steps 
decomposing into finer grained activities and tasks, and so on. Here is how a tree often looks: 
 

 
 
Notice how it is always possible to say that one box owns and/or is owned by others. A tree 
can be recognized in a data model by the following notation: 
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While simpler than networks, trees can be troublesome to report on if they are of 
indeterminate depths; that is, if one branch of the tree is 5 levels deep and the other is only 3, 
it’s hard to get a consistent, sensible report. A common strategy of data architects when 
dealing with tree-like structures is to fix the levels and establish that all branches of the tree 
have the same number of levels: 
 

 
 
but this in turn may have problems in dealing with the real world – what if the organization 
(or whatever) is just not structured that way? In fact, organizations may actually decide to 
structure themselves, and adapt their business processes, to fixed level hierarchies, as we see 
in retail organizations with their typical store-district-region hierarchies. 
 
A network is characterized by things that are related to other things, not necessarily 
containing. A diagram of a redundant wide area network, an org chart with “dotted-line” 
relationships, or a mapping of how systems interrelate, would probably be a network. Here is 
how a network often looks: 
 

  
 
While there are tree-like structures in it, the key difference is that it is no longer possible to 
say that one box owns or is owned by others. A network can be recognized in a data model by 
the following notation: 
 
 

 
 
This is also often called the “any to any” relationship.  
 
Trees and networks make IT service management data much harder to deal with, compared to 
sales or financial data. Why is this? Let’s start with a picture of my son:  
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. 
 

Thanks, yes I know he's cute. He's a happy boy :-). What I want to draw your attention to is 
the Skwish™ toy he's holding.  

 
 
Now, regular business data is like a deck of cards:  
 

 
 
You can say,  
 
"Show me all the red cards between 3 and 8" 
"Show me all the jacks" 
"Show me all the hearts and spades" 
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and it's a pretty simple problem. The hearts don't have much to do with the spades, and there's 
not a lot of ambiguity.  
 
The Skwish toy represents interconnected data. It's troublesome. You can say, "show me a 
small red sphere," but what if you say "show me everything connected to the small red 
spere"? What do you mean by that? The whole toy? Or just things immediately connected to 
the red sphere? By elastic? By wood? Where do you draw the line?  
 
What does this have to do with reporting for ERP for IT (and IT service management)? Much 
reporting is of the deck-of-cards variety. You can handle this with the same tools your 
business users use: relational databases and reporting/BI tools such as Crystal, Brio, 
Microstrategy, Actuate, and others.  
 
Using these well-established techniques, I can answer all of the following questions 
(assuming the data is consolidated into a data mart): 
 

- What services do I have? 
- Have I met my service levels for a service?  
- What is the history of changes associated with a configuration item? 
- How many projects do I have running right now?  
- What projects contributed to building this system, and what did they cost? 
- What does this system cost to run? 

 
But those tools don't handle reporting on interconnections. With relational databases and 
query tools, it's very hard to answer the following questions: 
 

- What is this service dependent on (other services, applications, hardware, network)?  
- What depends on this infrastructure piece, directly or indirectly? 
- Is the project on schedule? On budget? (Requires traversing an unknown number of 

project tasks and subtasks – obviously, project management tools do it, but an end 
user is hard pressed to deal with this data in raw form.) 

- For a project, what tasks are on the critical path? (Ditto.) 
- What is the complete lineage of this data item in this report? Where did it come from, 

what systems did it flow through? (A very important compliance issue.) 
- What are all the downstream destinations for this data element? What middleware 

infrastructure does it flow across? (Important security questions.) 
 
Basically, if you have language like "direct or indirect dependency" in a requirements spec, 
you probably are into the Skwish type (tree or network) problem. The problem is that while 
the theorists have been kicking this around for a while, no standard approaching SQL has 
been implemented across multiple platforms.11  

Recursive relationships in the data model 
The recursive relationship can easily be abused, and enable nonsensical connections. One of 
the major problems with the Configuration Item concept as framed by ITIL is that it calls for 
any-to-any relationships between CIs generally. (Actually, it calls for both the “contains” and 
“uses” relationships for any CIs.) However, some connections don’t make sense. For 

                                                      
11 See Oracle’s CONNECT BY operator 
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example, a cell phone should not “use” a database trigger, and a RAM chip would have 
nothing to do with an XML Schema – yet some configuration management tools allow the 
end user to put in such relationships. Being more precise is why we go to the trouble of 
building our data model – in an “any to any” world, you don’t need a data model’s specific 
lines, because anything can be hooked to anything.  
 
It is usually the case though that any configuration item of a given type can both use and 
contain other objects of the same type, especially in a high level conceptual data model such 
as this.  
 
For example, a server might contain hard drives; both would be types of machine. A machine 
might be connected to other machines via a network. A process can both contain and depend 
on other processes. Datastores contain other Datastores, and with mechanisms like linked 
databases also may depend without owning. A Deploy Point (i.e. a file system directory) can 
certainly contain other Deploy Points, and through mechanisms like directory linking 
(common in Unix) can also depend on them without owning.  
 
And finally, it’s also the case that the IT world is not well understood, and new dependencies 
present themselves. Therefore, it’s OK if the configuration management tool allows the any-
to-any relationship as a managed, controlled administrative option. It’s important to be 
clear on how this differs from bad practice CMDB tools: in the recommended approach, an 
administrator can decide that “well, we do need to track a dependency between XML 
Schemas and RAM chips.” They specifically allow just this additional dependency to be 
permitted by the tool and created by end users. In a poorly engineered tool, the user gets to 
decide what gets related to what. That is a recipe for chaos. 

Role management 
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The core data model has no roles or people in it. This is deliberate. Organizational 
approaches to managing the processes and their data will vary, titles will change, and in 
general the human organization will be more fluid than the core ITSM and metadata 
concepts. Therefore, the role structure is generalized; Parties (Persons or Groups composed of 
other Parties) have Roles with respect to any Entity in the model.  

Party/Person/Group 
A Party is either a Group or a Person; Persons are members of Groups and Groups can 
contain other Groups. The following are all Parties: 
 

� Oracle Incorporated  
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The human 
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� Bill Smith 
� Support group APPL-2-CNS 
� IT Service Management Forum 

 
Party is a controversial concept in data modeling, as business users do not understand it. They 
understand concepts like “administrator” or “steward.” However, these are roles. (These are 
very well understood issues in data modeling.) 

Roles 

Here are some example role types and the entities they might interact with. Note that ITIL 
does go into some depth around this, so it doesn’t include an exhaustive survey.  
 
Role Entity Notes 
Requester Service Request 

(as related to 
Service Offering 
or Service) 

A Requester can request a new instance of a 
Service Offering (which becomes a new 
Service), or request a change to an existing 
Service. 

Support Group Usually 
Application 

A Support Group would usually be a Group that 
is associated with one or more Applications. 
Sometimes, a Support Group might be 
associated with a Technology Product (for 
example, a Windows Engineering group).  

Release Manager Project, Release, 
Change 

A Release Manager is responsible for 
coordinating the output of a Project into 
Releases to be accepted into production.  

Change Coordinator Change  A Change Coordinator is responsible for the 
successful execution of one or more Changes. 
They may be part of a specific capability team, 
or part of an enterprise change team.  

Operational Change 
Approval Group 

Operational CIs An Operational Change Approval group is often 
seen as a dynamic entity, composed of 
representatives from the Support Groups that are 
associated with the CIs in question, as well as 
overall change coordination from a central 
enterprise group. Frequently, the Change 
Approval group may have standing 
representation from major Technology Product 
areas (e.g. Unix engineering, network 
engineering, etc) or other operational 
capabilities (e.g. Security) 

 
Here is a  common role type that may be problematic: 
Change Approver  Any CI ITIL calls for just a Change Approval Board. 

However, different CIs have different 
stakeholders. A better practice is to allow 
flexibility in the definition of the acting CAB 
(here called a Group) by CI. This however will 
require more maintenance.  
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For example, if a Contract is a CI, it should be 
under change control, but the change approvers 
would be the senior IT executives, the Contract 
Office, and Legal – your engineers would not be 
involved. The better understood use of Change 
Approver is with respect to Production CIs.  

 

Intersection entities 
This is a high level conceptual data model. Most of the relationships are of the “many to 
many” type. For example, an Application may use many Datastores, and a Datastore may be 
used by many Applications: 
 

 
 
In order to actually turn these language concepts into an operable system, an intersection 
entity is required: 
 

 
 
If you look at the main data model and imagine all the many to manys being elaborated with 
their intersection entities, you’ll see that it would be far too complex to represent as one 
diagram. That’s the beauty of a well-scoped conceptual data model; it should be able to 
represent a substantial problem domain on one page.  
 
The intersection entities are where the devil emerges from the details. For example, it is likely 
your database administration team has a list (at least a spreadsheet) of all their databases. 
Perhaps you have an application management group with their own spreadsheet. Therefore 
you might be able to say that you can populate the Application and Datastore entities. But 
who is responsible for the relationship, as represented by the Application/Datastore entity? 
Questions of this nature permeate the problem of configuration management. As a defined 
entity, documented processes are required for the creation, reading, updating, and deleting of 
data in the Application/Datastore entity. Would it be your application team? Your DBA 
team? A separate team of configuration analysts?  
 
The current state of most IT organizations is much less formal. What we often see is 
uncoordinated spreadsheets.  
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Chris: What’s so bad about people maintaining their own spreadsheets? 
 
Kelly: Well, let’s look at your organization. Here are some extracts from spreadsheets 
maintained by your application support, database, and server teams: 
 
Server team: 
Server name Notes

WNAPPL01 Supports FirstTime and X-time Batch. 

FRED ?

UXPLV01 PLV server. See Scott Armstrong.

WINWEB03 External Web server

UNXDB001 PLV databases

WINDB2 SQL Server 

TXEMLA Email server

QDXAPP02 Quadrex App Server  
 
Applications team: 

Servers Databases

Quadrex
QDXAPP02
UNXDB001 Oracle

X-Time WNAPPL01 SQL Server

PLV
UXPLV01
UNXDB001 Oracle  

 
Database team: 
Database Server App
PDBX01 UNXDB001 Qaudrex
LVDBX01 UNXDB001 PLV/X-time
ARGDBX02 WINDB2 Argent
GDBX01 WINDB2 GuardSys  
 
Chris: Ouch. This data makes my head hurt.  
 
Kelly: Well, stick with me. There are some serious issues here. Let’s focus on Quadrex. The 
server team knows that Quadrex uses QDXAPP02 as an application server, but doesn’t seem 
to realize that Quadrex also uses UNXDB001 through its use of the PDBX01 database.  
 
The application team knows that Quadrex is using QDXAPP02, and UNXDB001, but doesn’t 
have the level of detail that the DBAs do, that Quadrex is using specifically the PDBX01 
database on that server. Quadrex does not own that server – the PLV team is also using it. 
This is important from a cost allocation and support impact standpoint.  
 
Chris: Actually, no application team “owns” their server according to our VP for systems 
engineering, even if that server is currently allocated 100% to them. But some of them 
haven’t quite bought into that point of view… 
 
Kelly: Right… Common argument nowadays! Finally, the database team knows that Quadrex 
is using the PDBX01 database on UNXDB001 – but isn’t tracking Quadrex’s use of 
QDXAPP02, as that is an application server that they don’t manage. Finally, notice that 
someone fumble fingered the Quadrex name on the first row of the DBA spreadsheet, 
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misspelling it “Qaudrex.” This means that when we go to consolidate all this data into one 
database, we’re going to have manually identify and clean that up.  
 
Chris: Why didn’t the DBAs pick from a list of application names?  
 
Kelly: Has that list been shared with them? Do they agree with how those applications are 
represented? Is there confidence in the process for keeping the list up to date? (For that 
matter, is there even a process?!) Do they have a technical approach on how they can 
leverage that list? It can be done in Excel, but you start to get into advanced features – too far 
down that road and you’re looking at needing a real database-based system.  
 
 
The same issues need to be thought through for every many to many relationship:  
 

� Event/Incident/Problem 
� Applicaton/Technology Product 
� Application/Process 
� Change/CI 
� Change/Incident 

 
And so forth. The complexities of doing this are why vendor products are recommended, but 
it’s not impossible to build your own.  
 
This is also the most critical area to review the vendor product – a frequent vendor mistake is 
to put in a one to many where a many to many is required! For example, a Problem might be 
addressed by several Releases, but your problem management tool only allows you to 
identify one Release that fixes it. Or a Datastore may be shared by many Applications, but a 
configuration management tool only allows you to identify it with one. These are the kinds of 
details that are critical to review in assessing any vendor product – and it all starts with 
having good, specific, clear requirements for what you need to track and how it needs to 
relate. Even if you’re buying a vendor product, the data model is needed.  

Process and workflow 
In this data centric presentation, we haven’t talked a lot about workflow and process. Let’s 
turn to these from the data perspective: 

The CRUD matrix: an old standby 
A very well known technique for understanding data’s relationship to process is the 
unfortunately named CRUD matrix. CRUD stands for  
 

� Create 
� Read  
� Update 
� Delete 

 
A simpler version is a Create/Use matrix, whis is what is presented here.  
 

The CRUD, or 
Create/Use matrix, 
tells us the 
relationship 
between data and 
process.  
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Creating such a matrix is a key reason for doing a conceptual data model. With the data on 
one axis, and the processes on the other axis, the intersections are used for understanding how 
the data and process relate: 
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Program C U U U U U U U U
Project C U U U U U U U
Release C U
Problem U U U C U
Risk U C U U U U U U U U U U U
RFC U C C U U U U
Incident C U C
Service Request U U C
Event U C
Known Error U C U
Service Offering C U U U U C
Service U U U C
Technology Product U C U U U U U U
Process C U C U U U C U U U U U U U U U U
Application U U C U U U U U U U U U U U U U U U U U U U U U
Component C U U U U U U U U
Deploy Point U C U U U U U U U U U
Server/Workstation U U U U C U U U U U U U U U U U
Machine C U U U U U U U
Datastore U U U C U U U U U U U U U U U U
Asset U C U U U U
CI Group C C C U C U U
Measurement U C
Agreement U C
Contract U U U U C U C U U U U C U U U U
Document C C C C C C C C C C C C C C C C C C C C C C C C C

Processes

Portfolio Management
System

 development ITSM/ITIL
E

nt
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es

 
 
This Create/Use matrix is presented as a starting reference model. There’s lots of interesting 
questions generated by such a matrix; the cells highlighted in gray show some of these: 
 
Is a Problem created in the Incident process or is it created in the Problem process (Incident 
Management refers one or more Incidents to Problem for further analysis, but Problem makes 
the call as to whether to create a new Problem record.) 
 
An RFC can be created by the Release Manager in the System Development process, or by 
some team attempting to respond to an Incident – when an Entity can be created by more than 
one Process, this deserves special attention. Ditto for Service Offering, Process, and Contract. 
Contracts might be created as the result of outsourcing service agreements, for vendor 
product purchases, or between the IT organization and its clients – three different origination 
processes.  
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Notice how many processes use the Application entity! This is typically one of the most 
poorly-managed entities in all of IT governance.  
 
Measurement and Agreement look like very weak entities; they are subsidiaries of Contract 
and are not widely used by other processes. To make the conceptual model cleaner, we might 
consider removing them entirely.  
 
A Document can be created by any of the process areas – and when this is true, the value of 
having the entity in the CRUD matrix becomes questionable.  
 
These weaknesses are purposefully left in for demonstration purposes; one objective of this 
document is to enable the reader to build their own analysis.  

Workflow 

Entity lifecycles and audit trails 
 
One requirement for IT enablement tooling in general is rigorous tracking of all changes to 
any entity: who changed what, when. There are a surprising number of tools that do not do 
this, and should be ruled out as possible product choices for any enterprise. Technical terms 
will be effective dating and audit trail (if your vendor gives a blank stare when you mention 
these, look elsewhere).  
 
Businss process meets the entity through these techniques, especially when audit trails are 
collected on the changing roles and responsibilities for an entity (see the Role Management 
section above). A trail of who “owns” an incident and where it has been referred is a key 
feature of most incident management tools; this is a specific example of the general principles 
here. Effective dating of status changes is (in part) how SLAs are monitored for things like 
Incident, Service Request and Problem resolution.  
 
Similarly, IT enablement tooling should manage audit trails on other entities and their role 
assignments: 
 

� Who have the Application Managers been for this Application?  
� What Projects have built upon this Application? Who has been on them?  
� Who has approved this Change? 

 

Reporting 
One criteria for evaluating IT enablement tooling is the quantity and quality of reporting 
available. Some reports that should be available with push-button ease from an integrated 
(ERP-like) IT management system would be: 

Operational reports 
� Applications using Datastores and Servers 
� RFCs and their Configuration Items 
� Projects affecting an Application 
� Changes planned for a given Release 
� Releases affecting mission-critical (i.e. Risk-identified) systems 

Effective dating of 
status changes is 
how SLAs are 
monitored for 
things like 
Incident, Service 
Request and 
Problem 
resolution. 
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� Application Dependencies on Technology Products 
� Applications accessing Confidential (i.e. Risk-identified) Databases on Servers 
� Applications and their Stakeholders 
� Incidents resulting in Problems  
� Problems by Application 
� Problems by Application, correlated to Project Release (Quality Assurance report) 
� Average Time to Resolution of Service Requests 
� First Call Resolution for Service Requests 
� Servers due for Lease Refresh, Dependent Applications, and Owners 
� Applications dependent on other Applications 
� Services and their Dependencies 
� Application Transmission of Data to other Applications 
� Data Definitions for Datastores 
� Services dependent on External Providers 
� External Connections due for Stakeholder Validation 
� Total Cost of Acquisition for Application 
� Allocated Infrastructure Cost for Application 

Exception reports 
Exception reports are critical checks on processes via analysis of data quality; they often are a 
metric indicating process success. 
 

� Service Request/Incident/Problem aging over X days 
� Applications with no known Stakeholders 
� Applications/Services with no known Supporting Dependencies 
� Servers with no known Applications 
� Servers with no known Machine 

 
These are only examples – a robust integrated IT enablement capability will have hundreds of 
reports.  

Complex dependency capture 

The core of configuration management 
The following entities are perhaps the core of production configuration management: 
 

 

Exception reports 
are critical checks 
on processes; 
they often are the 
key metric 
defining process 
success. 
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There are many variations and refinements on this basic problem area, for example the 
DMTF has extensive specifications and large parts of the OMG’s modeling languages also 
cover it. The Fundamentals of Integration Metadata series on the www.erp4it.com site goes 
into great detail on enterprise application integration configuration management.  
 
A typical pattern in many organizations is for this data to be very fragmented, into small, 
incomplete spreadsheets and databases. Often, there is no defined process for keeping these 
data sets up to date, and each point solution takes a particular point view at the expense of 
related data. (See the story in the Intersection Entities section above.)  
 
Centralized attempts to maintain this data have proven ineffective as well. There are three 
major areas that historically have attempted this mission: 
 

� Metadata management (the oldest) 
� Enterprise Architecture 
� Configuration Management (most recent) 

 
The trouble in all of these cases starts when a centralized team attempts the data maintenance, 
with little or no distribution of process steps and (often) no defined process at all. History has 
not been kind to such attempts, which usually wind up abandoned.  
 
It is therefore critical to distribute the maintenance of complex system dependencies to the 
application and support teams. This is not as hard as it sounds: 
 
First, it is not generally recognized in the IT service management discussions that complex 
system dependencies are carefully mapped by development teams. The problem is that these 
mappings are too often done in a format (e.g PowerPoint or Visio) that cannot be consumed 
by a configuration management capability. This is simply a matter of standardization and tool 
alignment. (See the Model Driven Configuration Management article on www.erp4it.com.) 
 
Second, an elegant closed-loop process with mutual incentives can be defined between the 
application and engineering teams. Most organizations have split server (data center) 
engineering and operations from the application development and maintenance teams; this is 
increasingly required to meet audit objectives regarding separation of concerns. The data 
center team is often hard pressed to understand the dependencies on a given device (the 
classic “Can of Coke” problem – if I spill one on a machine, what business process is 
affected?) This leads to continuous issues when servers need to be patched for cross-cutting 
system reasons (e.g. anti-virus measures), or when 20% of the servers in a data center must be 
retired for lease refresh reasons.  
 
The application teams find themselves reacting to unplanned outages, reboots, and having to 
scramble because a server must be decommissioned. Neither side in this equation is particular 
happy with the other.  
 
The solution (which has been seen to work) is to require the application team to document 
their dependency on the server. The understanding must be that if the application team does 
this, it will be notified of server impacts. If it does not do this, the application team has no 
expectation of notification. Since application teams are generally more customer-facing than 
the engineering/data center teams, they have the higher incentive to do this.  

Central 
maintenance of 
complex 
dependencies 
usually fails. 
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A note on discovery 
Tools have always existed that can inspect an IT processing environment and analyze the 
inventory of programs, files, processes, and the like. These tools are becoming an important 
point of discussion as Configuration Management becomes more mature. Too often, 
however, they are presented as a “silver bullet.” The trouble with relying on discovery is that 
(even at its best) it can only tell you what is there – not whether it should be there. (Just like 
your bank statement – it tells you what the transactions were, but did you intend them?)  
 
A major capability any discovery tool requires for relevance in enterprise IT is the concept of 
fingerprinting or footprinting. This is an ability to infer from the presence of some physical 
component that a logical application dependency exists. For example, if we see the 
executable file qdx.exe on a server, we can infer that the logical application Quadrex is 
dependent on this server. (However, it cannot answer the question whether Quadrex should 
be there.)  
 
Footprints must be maintained – if a new Quadrex module consisting of newly-named 
executables is deployed, the discovery system’s database will need updating. This needs to 
have an explicit process step, probably as part of the overall Release process.  
 
Finally, discovery tools are limited in their ability to detect application to application data 
transfers, which are some of the most critical dependencies in a large enterprise. Due to the 
wide variety of means via which application data can be transferred, no discovery tool yet 
exists that can comprehensively map all the different flows: FTP, file shares, middleware, 
ETL, EAI, Web services, shared databases, and so forth. Files renamed en route, parameter-
driven EAI adapter architectures, dynamic binding of process to data resources, and similar 
challenges make this an extremely difficult configuration management challenge; for further 
information, see the Fundamentals of Integration Metadata series on www.erp4it.com.  
 
It should however be a goal for the enterprise’s technical architects to specify an integration 
architecture that is as transparent as possible, so that this notorious problem becomes easier to 
manage. Providing greater visibility here is one of the key justifications for centralizing an 
enterprise Integration Competency Center. 

The trouble with 
relying on 
discovery is that it 
can only tell you 
what is there – not 
whether it should 
be there. 
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Final issues/open loops 
 
This model attempts to handle both workstation/desktop computing and data center 
computing in one. I question whether they should be completely separated. 
 
The model does not go into the higher levels of IT governance (Mission, Objective, Strategy, 
External Influence, Risk).  
 
The model does not cover financial data explicitly. (The mapping of Application into the 
enterprise’s financial structures is a key enabler.) 
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