
 Page 1

A data architecture for
IT Service Management

Charles T. Betz

Chris: One thing that has us all puzzled is exactly how the ITIL/ITSM concepts fit together,
and work with other non-ITSM concepts. There’s a lot of terminology and it seems like
things overlap sometimes. For example, what is the relationship between a Configuration
Item and an Asset? Also, some of what ITIL calls for is not exactly how we do business. Do
all Configuration Items go through our data center change control process? What is the
relationship between a Service Request and an Incident? Is a Service a Configuration Item? Is
a Service Offering?

Kelly: That’s why we’re going to turn to one of the most important aspects of enterprise
architecture: the creation of a conceptual data model.

Chris: A conceptual data model? What good is that? We’re probably not going to build
anything – we’re going to purchase products. Sounds pretty technical.

Kelly: That’s why I call it a conceptual data model, and yes, it’s very relevant even if you are
purchasing products. There’s a lot of vendors out there selling various flavors of IT
enablement and IT governance tools and they have a lot of overlap between their products,
often with slightly different terminology.

A conceptual data model is NOT technical – it’s really about clarifying the language
describing our problem domain, so that we understand exactly what we mean by a
Configuration Item and how it might relate to a Service. And this is something you need to
put together independent of the products – because it’s going to be your road map that helps
you determine what products you need.

Chris: Will it help me translate the vendor-speak?

Kelly: Absolutely. One vendor may have a “Service Catalog Entry” and an “Order,” while
another vendor may call the same two things a “Template” and a “Service Instance” In our
conceptual data model (which we also call a reference model) we call them “Service
Offering” and “Service.” It doesn’t matter what the vendors call them, but you need to
understand that any competent service request management solution should have both
concepts. Doing the data model helps us understand our requirements better and
communicate them to the vendor.

A data architecture for IT Service Management

 Page 2 Copyright © 2005 Charles T. Betz

The Problem
Process-centric thinking is a hallmark of modern business practices. IT Service Management,
and the ITIL specification, are process frameworks. They focus on overall functional
capabilities and the sequences of activities which add value for the customer (internal or
external). This is well and good, and one should always start with the business process in
such matters. However, the ITIL/ITSM movement is starting to run into the limitations of
pure process-centricity. When one is architecting systems (defined as combinations of people,
process, and technology) the concept of data is critical. Data has been either absent, or at best
a second-class citizen in much of the ITSM literature and training. The consequences of this
are clear from an enterprise architecture perspective: processes can’t be fully optimized,
because the “things” which the processes are managing are still unclear to the process
stakeholders. In many cases redundancy is the result: two processes may be managing the
same thing, but calling it by two different names. Or – especially with the ITIL concept of
Configuration Item – two very different things may be lumped inappropriately together in a
given process context.

This is compounded by the current vendor landscape, in which many vendors are selling
overlapping products that refer to the same logical concepts with different terminology –
sometimes, this appears to be a deliberate strategy to create the illusion of product
differentiation where none really exists. Without a sound, product-independent data
perspective, IT Service Management and its implementers will be somewhat hostage to
product vendors.

A Conceptual Data Model
How do we gain more precision around hard-to-define concepts like “change” or
“configuration item”? One technique used for many years is an “entity relationship model.”
(Other terms are “conceptual model,” “logical model,” “domain model,” “ontology,” “class
model,” and so forth.)

An entity relationship model helps us clarify our language, by relating concepts together in
certain ways:

- A Configuration Item may have many Changes, and a Change may have many
Configuration Items. (Many to many.)

- A Machine may be related to an Asset, and an Asset may be related to a Machine.

(One to one).

- A Configuration Item may be a Service, Process, or Application. (Subtyping)

These relationships are visually represented as follows:

 or

IT Service
Management is
running into the
limitations of pure
process-centricity.
When one is
architecting
systems the
concept of data is
critical.

Without a,
product-
independent data
perspective, IT
Service
Management and
its implementers
will be hostage to
product vendors.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 3

Using these tools, we can start to carefully structure the relationships between the various
loosely-used terms of IT governance: 1

Figure 1. IT Governance information model

1 I use containment to indicate inheritance, and the crow's foot to indicate cardinality. At this level of
modeling I am not concerned with composition vs. aggregation, or optionality. I use my own Visio
idiosyncratic notation partly for convenience, and partly for intellectual property reasons. For further
information see any book on data or class modeling.

A data architecture for IT Service Management

 Page 4 Copyright © 2005 Charles T. Betz

Pictures such as this only tell part of the story, however. They require a detailed discussion of
each box (or “entity”), what it means, and how to interpret the lines (“relationships”) with the
other boxes.

This is a conceptual data model. It is primarily about refining language and concepts. It
deliberately omits a number of data structures that would ultimately be necessary to realize a
solution.2

Chris: Wow. What a picture. I’m getting a little glassy eyed.

Kelly: That’s OK. Just take it a couple boxes at a time, and here are some useful reminders:

First, it’s all about the language. This picture is a long way from anything we’re going to
build; it’s here to help us understand how our project, incident, change, monitoring,
configuration, and service management systems relate.

Second, there’s a trick to reading the lines. Where you see an arrow or a box
inside a box you should read it as “Is A.” For example, an Application Is A Deployable

Object. Where you see a crow’s foot on either or both ends or a cross hatch

 then you can read it as “Has” or “Is Associated With.” For example, an
Application Has Components, or an Asset Is Associated With a Machine.

Chris: That makes it easier. It’s still pretty complicated though!
Kelly: Well, let’s go through it in some detail.

Configuration Item & subtypes
Configuration Item (CI) is one of the most necessary yet problematic concepts in all of IT
governance. It must be very carefully defined and managed. Here is the ITIL specification:

“Configuration structures should describe the relationship and position of CIs in each
structure… CIs should be selected by applying a decomposition process to the top-level item
using guidance criteria for the selection of CIs. A CI can exist as part of any number of
different CIs or CI sets at the same time… The CI level chosen depends on the business and
service requirements.

“Although a 'child' CI should be 'owned' by one 'parent' CI, it can be 'used by' any number of
other CIs…

“Components should be classified into CI types…Typical CI types are: software products,
business systems, system software.…The life-cycle states for each CI type should also be
defined; e.g. an application Release may be registered, accepted, installed, or withdrawn…

The relationships between CIs should be stored so as to provide dependency information. For
example, … a CI is a part of another CI[,] … a CI is connected to another CI [,] … a CI uses
another CI…”

2 The omitted data structures are generally intersection entities and dependent entities that elaborate on
the core concepts. Process focused entities are also omitted. Some notes on possible approaches for
elaborating this into a full logical data model are covered in the data definitions.

A CI itself is a
managed, specific
object or element
in the IT
environment. It is
one of the most
problematic
concepts in all of
IT governance.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 5

This is a very general representation, and one issue in the industry is that some vendors have
interpreted this specification to allow their end users far too much freedom in defining
configuration items and their relationships. More rigor is necessary. This analysis refines the
ITIL representation and makes it more specific.

A CI itself is a managed, specific object or element in the IT environment. A CI by
definition is under change control and the RFC process. That means that certain things are
NOT CIs, for example:

- Events
- Incidents
- Requests for Change
- Projects

CIs may be logical or physical, deployed or undeployed, but always specific. "Oracle
Financials," if present in the environment, would be a logical CI, containing and using many
physical CIs (e.g. software components and datastores). A Generic "Human Resource
Management Application" as a reference category would not be a CI.

CIs have subtypes, and those subtypes in turn can have subtypes. Here is one representation:

:
Chris: So, I’m seeing that a Document is a CI – OK. And an Operational CI is a CI? What do
the italics mean?

A data architecture for IT Service Management

 Page 6 Copyright © 2005 Charles T. Betz

Kelly: The italics mean that something can’t only be an Operational CI, or a Configuration
Item itself. It has to be something under the box with italics: in this case, a Service Offering,
Technology Product, Asset, or something under Production CI.

Chris: Why do we bother with these detailed types anyways?

Kelly: It’s all about being precise. Suppose that we just had one category of CI, which
included documents, service offerings, and contracts as well as servers and applications.
Servers and applications can have Incidents and Known Errors – but can a Contract? Not
really. This is basic information modeling; people can spend their whole careers specializing
in describing data structures precisely. One of the problems of CMDBs is that they didn’t
really take this side of things seriously at first, and so many early CMDB attempts weren’t
successful.

The major types of CIs are:

� Configuration Item (base)
� Operational Configuration Item
� Production Configuration Item

They are “nested”:

��������	
�����
�

���	
���	����

������
������

which means that an Operational CI is also a Configuration Item, and a Production CI is also
an Operational CI as well as a base Configuration Item.

The base Configuration Item is the master category that all CIs belong to. It is any “thing”
in the IT environment that requires management (usually defined as being under change
control of some sort). Also, a Configuration Item typically has an indeterminate lifecycle,
unlike a Project or an Incident which are defined and tracked partly in terms of their closure.

Configuration Items have differing levels of involvement in day to day service management
and production processes. The base level CI includes documentation and the definitions of
service level measurements, objectives, and agreements. Any type of CI may be involved in
an RFC.

Change control for items that are purely Configuration Items (not Operational or Production)
may or may not be formalized – this is discussed below for the various item types.

Servers and
applications can
have Incidents
and Known Errors
– but can a
Contract?

This architecture
proposes three
major categories
of Configuration
Items: base,
operational, and
production.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 7

An Operational CI is distinguished from the other CI types (Document and Group) as
something involved in day to day business processes, and that can be measured and is a
primary entity in the Service Management workflow. Changes to operational CIs (that are
not also Production CIs) may be managed strictly by a functional group. For example, the
Service Management group may define Service Offerings, or the Asset Management group
may add new assets, without going through the highest-formality change processes.

A Production CI in turn refines the concept of Operational CI to include the core CIs that
may be involved in Incidents and have Known Errors. (Think data center, or production
workstation.) Change control for production CIs is usually a formal, high-visibility process
that is what most enterprise IT people think of when referring to “the change process.”

Configuration Item dependencies

The CI concept in this model recommends that arbitary dependencies (owns and uses) be
allowed only between CIs of the same type, or for purposes of grouping into manageable
packages. Without this constraint, it would be possible for a (software) Component to contain
a Server. Preventing such nonsense is the reason why we do logical and physical data models,
and if your vendor or internal partners don't seem to get this issue, start raising flags.

However, it is possible for any CI of a given type to depend on or own a CI of that same type.
This is discussed in the section for each type.

For further information see the section on recursive relationships.

Logical and physical CIs
CIs can be logical or physical. Physical in this case means no ambiguity about the boundaries
of the CI (even if it is only transient bits on volatile storage). Logical means that some
consensus is required to set the bounds of the CI. Applications (especially in-house built),
processes, and services in the service catalog sense are the best examples of logical CIs.
Machines, components, files, and network addressable Web services are physical CIs.
Managing logical CIs is challenging and requires clearly defined process to establish the
bounds of this potentially blurry “thing” and get buy-in that the boundaries are correct.

Chris: What’s the big deal with applications and how they’re “logical”? You’ve been harping
on that all day.

Kelly: I found this diagram in some of your system literature:

It’s the perfect example. Those little boxes with “dog ears” are a standard representation
(from UML) of software components. Notice how they are named – that’s what you would

An Operational CI
is something
involved in day to
day business
processes, and
that can be
measured and is a
primary entity in
the Service
Management
workflow.

Applications
(especially in-
house built),
processes, and
services in the
service catalog
sense are the best
examples of
logical CIs.

Machines,
components, files,
and network
addressable Web
services are
physical CIs.

A data architecture for IT Service Management

 Page 8 Copyright © 2005 Charles T. Betz

actually see on the servers supporting the application. The functionality as a whole is named
Quadrex; that’s how you refer to it in meetings and in the halls – but there is really no such
thing, as far as your computers are concerned.

CI Group
Configuration Items require grouping for various reasons, such as supporting a Release or a
Service Request. The CI Group leverages the Owns and Participates relationships to support
this.

Document
A Document may be a Configuration Item if its existence and content are significant enough
to IT service delivery to warrant formal change control. It may apply to any CI or CI Group.
There are of course many other types of Documents, and not all are under change control
(which makes them not Configuraton Items.) Another major class of Documents that are
usually under change control are project documents. However, this change control is usually
at the project level and ITIL specifically avoids discussing it.

Contract
A Contract is an agreement between two Parties with authority in the overall IT service
context. A Contract may enumerate several formal Agreements, based on objectives for
Measurements of Configuration Items. Contracts are often the subject of intense scrutiny, and
their signing is (or should be) a very visible event. However, usually a Contract Management
Office performs this particular type of change control, and it is not part of the mainstream
“change process” as generally understood in most IT organizations.

Measurement
A Measurement is a defined, specific characteristic of a Configuration Item. Specific should
mean countable or otherwise deterministically translatable into some form of scale or
categorization. This conceptual entity encompasses both the definition of the measurement as
well as implying its specific instances. A Measurement is meaningless without the context of
a CI. Measurements have objectives as an associated concept (not shown in the model.)
An objective is with respect to a Measurement – what the measurement ought to be. This
specifically supports the concepts of Service Level Objective and Operational Level
Objective, where a service provider may have informal service targets that are not the subject
of an Agreement. A Measurement definition is a Configuration Item because it represents the
criteria on which IT service performance is measured.

Agreement
An Agreement is between two Parties with respect to a Service Level, Operational Level, or
some other aspect of a Configuration Item. A Contract may have many Agreements.

Chris: OK, how does this all fit together? Document, Contract, Agreement, Measurement?
Seems a little elaborate.

Kelly: Let’s walk through a couple cases.
- an email service where you are guaranteeing 2-day turnaround on 95% of email

requests on average, as an SLA to the client.

A Contract is an
agreement
between two
Parties with
authority in the
overall IT service
context.

A Measurement
definition is a
Configuration Item
because it
represents the
criteria on which
IT service
performance is
measured.

An Agreement is
between two
Parties with
respect to a
Service Level,
Operational Level,
or some other
aspect of a
Configuration
Item.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 9

- A consolidated database farm where you are guaranteeing 99.995% uptime as an
OLA to your application teams

The email account provisioning is a Service Offering, and each account request is a Service.
Both are CIs; therefore they can both have Measurements. The Measurement for the Service
Offering might be “Aggregate % Turnaround in Days.” Each individual Service has
associated workflow that tells you the request date/time, and the completion date/time. Those
measurements are aggregated into the overall Service Offering measurement.

The Objective for that Measurement might be “<= 2 Days for 95%.” (There are precise ways
to represent this so that a service management application can precisely calculate it.)
However, that Objective is just an informal stake in the ground until it is the subject of an
Agreement between two Parties. And as we all know, if those two parties are within the
service provider it is an Operational Level Agreement; if one is the client and one is the
service provider it is a Service Level Agreement. That particular SLA might be part of a
broader Contract specifying all aspects of the relationship between client and provider. That
Contract in turn is a Document and therefore a CI – one would hope a contract is under
change control! But again, is it managed by exactly the same processes and systems that
handle the deployment of software in a data center? Perhaps, but probably not.

Chris: What about the database farm?

Kelly: That’s simpler. Let’s assume it’s a non-orderable service (it was purpose built for a
suite of applications and no more databases will be hosted there). The only thing different
from the email case is that it’s not a Service Offering; the measurement is on the Service.
Aggregation is still necessary at a technical level, however, and that’s where you get into the
relationship between the Service Level Management capability and the lower level
monitoring architecture.

Operational CI
An Operational CI refines the base CI concept by including things that are measurable3,
which includes Service Offerings, Technology Products, and Assets. Operational CIs also are
directly involved in the day to day provision of services, while the documentation-oriented
base CIs are not.

Some Operational CIs are also Production CIs and will be described below. The Operational
CIs that are NOT production CIs are Service Offering, Technology Product, and Asset.

3 Note that the Measurement entity is the definition of a measurement, such as “transactions per
second,” “average response time,” or “downtime.” Such definitions are not themselves measurable –
think about it. But they might well be under change control as a basis for contractual agreements.

A data architecture for IT Service Management

 Page 10 Copyright © 2005 Charles T. Betz

Operational CIs are under change control, but it is a different kind of change management
dependent on their specific lifecycles. A Service Offering goes through a different process
than a change to a production application server. While ITIL implies that CIs all participate in
a generalized conceptual RFC process, the reality is that they might not leverage the high
visibility change control process which is usually focused on the production data center.

For example, a new Technology Product will probably go through some sort of adoption and
certification process, perhaps led by key stakeholders for that given technology domain. But
it probably will not be a subject of Change Advisory Board discussion, unless that CAB has a
broader scope than usual.

Asset
An Asset is a financial concept. It shows up on the company’s balance sheet and may be
depreciable. The “Asset” concept is often one to one with Machines and Applications.
However, a Machine may or may not also be an Asset.

Chris: Alright, you got me. When is a Machine not an Asset? It can be on the loading dock
and it should still show up on our books.

Kelly: Remember when we signed the deal with Nexatel? Part of the arrangement was that
they would locate two of their management servers in our data center. Stuff like that happens
all the time nowadays. We track those servers as CIs; they are attached to our network,
mission-critical, and we even pull data off of them. But they aren’t ours and don’t show up on
our balance sheet.

For Software, the Asset is more or less equal to the software license. There is little or no
industry consensus as to whether to call in-house built systems “assets.” Generally this is not
done, but there’s increasing awareness that they need to be managed as a portfolio – what
relationship this portfolio management concept has to formal Asset Management is to be
determined. Certainly, some of the background and orientation of experienced Asset
Management staff would be valuable to the IT Portfolio Management objectives. Will Asset
Management ultimately be seen as a subset of IT Portfolio Management?

 Assets should have asset tags and formal IDs, and should not be tightly coupled to serial
numbers – cases have arisen where serial numbers change but the asset remains the same, for
example if the serial number is tied to an assembly that is field-replaceable or is replaced
under special circumstances, such as a server frame or motherboard.

Technology Product
A Technology Product is another name for the combined Definitive Software & Hardware
Libraries (or at least their data indexing). The concept of Technology Product is crucial for
enterprise architecture and vendor management. A well-defined Technology Product
database, with mappings to the specific Applications and Machines that are dependent on
those products, enables tracking the enterprise’s status with respect to product obsolescence,
security issues, vendor support, and overall technical roadmap. It also helps in program
estimation and is an input into non-functional drivers of IT cost.

Chris: Non-functional drivers of IT cost? You lost me there…

While ITIL implies
that CIs all
participate in a
generalized
conceptual RFC
process, they
might not leverage
the high visibility
change control
process which is
usually focused
on the production
data center.

A well-defined
Technology
Product database,
showing
dependencies on
technologies, is
critical for the
enterprise’s
vendor
management and
technical
roadmap.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 11

Kelly: We understand when the business comes and asks us to build something. Where we
fall down is when (Oracle CEO) Larry Ellison decides to stop supporting Oracle 8, for
example. Our business clients typically don’t have any awareness of such shifts in the product
landscape, but it’s a really big deal for us – we either have to go without support, pay an
expensive (and less-qualified) third party for aftermarket support, or re-test all our software
on Oracle 9. Our business clients wish that these kinds of costs would just go away, but it’s
not that easy.

The thing is, we knew 18 months or more in advance that Oracle 8 was going off support. We
were kind of in denial about it, partly because we didn’t have a good handle on our exposure.
Now, with a complete understanding of the technology stacks underlying our apps, we know
exactly what our exposure is when Oracle 9 goes off support in 2007 – we’ve got 3 big
packages and 4 smaller applications, and we’ve already got the funding identified in our long
range plan.

And don’t even get me started on the Windows server patching costs – but again, with our
mapping of Technology Products to Applications and Machines, we have a much better
handle on our exposure there as well. We know that every 30 days we have to allocate 1 FTE
per 10 servers for a week to patch and reboot, and we are able to notify those application
teams systematically as we do that. Much better customer service.

Note that Technology Products may include both hardware and software. It is difficult to
make a distinction between the two in the purchased product space, as many
purchasable solutions include both, with some level of independence (think of a Cisco
Router with its upgradeable firmware, or a turnkey materials management system based on
IBM iSeries [AS/400] computers).

Service Offering
A Service Offering is a defined entry in the enterprise service catalog. It is a measurable and
specific offering of the IT organization to external clients. It should be seen as a “logical
API”4 of the service provider; everything under it (in theory) may be opaque to the service
consumer. A service in this sense is not a specific technical offering like a Web service; a
specific Web service would be a Component and would be linked to the Service entity.

4 Application Programming Interface. This is a key concept to object and component oriented
development; major characteristics of a computer program or module are encapsulated behind a
defined set of gateway operations. The idea is that 1) the only way to access the program’s
functionality is through the interface and 2) it is no concern of the user how the program does its job; it
can be radically revised as long as the interface still exhibits the same behavior. This is a perfect
analogy for Service Offerings and Services. To carry it further: the Service Offering is the API
definition, while a Service is a particular invocation (sometimes very long-running – the metaphor is
not perfect) of the API.

It is difficult to
make a distinction
between hardware
and software for
purchased
technology
products.

A data architecture for IT Service Management

 Page 12 Copyright © 2005 Charles T. Betz

A Service Offering is not a Service. The Service Offering is a template, an item type – but it
is not the Item. One Service Offering may result in many actual Services; in other cases, a
Service may not even have an Offering (it is a non-orderable service). However, an Offering
with no ordered Services is like a poorly-selling retail product; its reason for being is clearly
in question.

Examples of service offerings might be:

1. Provision new user with a workstation
2. Set up new email account
3. Set up new user in HRMS system
4. Complete bundle of 1, 2, and 3.
5. Provide wide area networking to new remote store.
6. Provide new tech stack instance to project (e.g. J2EE standard container and Oracle

database).

Service Offerings in some cases will reference single or multiple Technology Products which
may be composed of other Technology Products (a common term is “stack.”) For example,
one service offering may be “Enterprise Java application hosting using Weblogic 8.0 and
Oracle 9i, with high availability.” The overall stack might be called “HA Enterprise Java with
RDBMS,” with dependencies in turn on Weblogic 8.0 and Oracle 9i and the necessarily
server infrastructure to enable HA.

There is risk of making Service Offerings and Services too granular. A distinguishing feature
of any Service Offering is that it must have a quantifiable price. (Not all Services must
have a price, however.)

Service – Service Offering
A Service Offering may have many Service instances. See the Service discussion below.

Production CI
A production CI is where the rubber meets the road. It’s something that’s directly involved in
the day to day delivery of IT services, and whose failure or compromise would have an
identifiable impact. Production CIs are best thought of as the data center and all its
components, the networks, and the production workstations attached to those networks. A
Service is itself a production CI, a high-level logical one that serves as a sort of interface by
which the end user interacts or gains value from the complex underlying IT infrastructure.

The concept of “production” can be a little paradoxical. As the development lifecycle gets
more and more mature, one can see developer’s workstations and lab servers as “production”
servers supporting the business process of software development. A true non-production
status increasingly must be reserved for pure “sandbox” R & D machines being used to
evaluate products and technologies. A developer workstation being used to develop assets
upon a standard, proven Java/Oracle technology stack, to tight timeframes and deliverables, is
a very different thing from a prototype workstation brought in to demonstrate the viability of
a new 64-bit architecture, or experiment with a new encryption product.

Production CIs are often logical (Service, Process, Application). This makes them no less
important. Managing the logical CI is one of the most challenging aspects of configuration
management; a clear approval and publication process is required.

A Service Offering
is not a Service.
One Service
Offering may
result in many
actual Services; in
other cases, a
Service may not
even have an
Offering (it is a
non-orderable
service).

A production CI is
something that’s
directly involved
in the day to day
delivery of IT
services, and
whose failure or
compromise
would have an
identifiable
impact.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 13

Production CI – Event
One distinguishing feature of a Production CI is that it is the only CI type that may raise a
monitored Event. Almost without exception, only physical Components, Servers, Machines,
or Datastores can raise events.

Production CI – Incident
Another distinguishing feature of a Production CI is that that is the only CI type against
which an Incident can be registered. Incidents can be against logical CIs (e.g. Application),
either through a Service Request or through event correlation.

Production CI – Known Error
Another distinguishing feature of a Production CI is that that is the only CI type that may
have a Known Error.

Service (and the Service-Application relationship)
A Service is an instance of a Service Offering. Where the Service Offering may be “Provide
email to new user” the Service is “Provide email to Peter Baskerville,” accompanied by the
various workflow steps documenting the provision of that service from start to finish.

Services do not depend on automation. The IT organization may provide a purely human-
based Process with no Application involved; it may provide a service based strictly on the
availability and performance of an Application, or finally it may be both – a Service based on
the human execution of a Process backed by automated Applications.

The Service aspect of applications is distinct from services focused on provisioning end
users. Provisioning end users results in many Services for one Service Offering:

Service Offerings often require average turnaround times as part of their SLA (e.g., provision
email within 48 hours.)

However, the following are Application services:

- Maintain the Quadrex system up with 99.99 availability over 12 months, and 99.995
availability during the peak season.

- Complete the X-time batch by 8:00 am every weekday morning 99% of the business
days.

A Service is an
instance of a
Service Offering.

A data architecture for IT Service Management

 Page 14 Copyright © 2005 Charles T. Betz

Another emerging term for Application services are non-orderable services. This means that
while they are measured, they are not requested5. Their ongoing maintenance is assumed and
may be the subject of service-level agreements, but those service level agreements are not
based on workflow (e.g. speed of request fulfillment) – they are based on measured behavior
of the non-orderable service (e.g. availability). Non-orderable services do not have a Service
Offering entry. Note that for comprehensive service level management, both Service
Offerings and Services need to be tracked.

An Application may play a part in supporting service offerings, especially with respect to
provisioning:

Process
A Process is a defined set of tasks, usually executed in sequence, that results in a specific
business objective (according to process guru Michael Hammer, it must “provide value for
the customer”). Processes should be managed as distinct CIs with clear names, identities, and
lifecycles; formalizing their management is a major challenge today and current reality in
most shops is a very informal process portfolio based on undocumented group consensus. It is
a hierarchical concept with much ambiguity around granularity; there are various hierarchies
such as Workflow/Task/Step and so on. Formally managing a process portfolio results in the
interesting meta-question, guaranteed to glaze the eyes of executives: "what is the process to
manage the processes?" (Something like "what is the data about the data?)

Process-Application
Processes are supported by Applications in a many to many relationship. For example, the
pricing process at a large retailer may involve a merchandising system and a point of sale
system, provided by different vendors. The merchants set the prices, which are then
replicated down to the point of sale terminals. Value is not derived from the process until it
runs from end to end, so we have one process depending on two applications.

Similarly, it is common for one application to support two distinct processes, such as a CRM
system that supports both operational customer interactions as well as analytic planning
purposes.

5 Or to be precise, they are “ordered” through the demand/program/project lifecycle. A current debate
in IT Service Management is the blurry boundary between discrete atomic services such as “Order new
workstation” and project-based “time and materials” requests such as “Build a new application.”

Another emerging
term for
Application
services are non-
orderable
services. They are
the subject of
service-level
agreements based
on measured
behavior of the
application (e.g.
performance &
availability).

A Process is a
defined set of
tasks, usually
executed in
sequence, that
results in a
specific business
objective.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 15

Process is the fundamental unit of management for the Business Process Execution Language
(BPEL) spec. For further information see the literature on Business Process Management.

Application
An Application is a logical grouping of software components. Technologists may liken it to a
"namespace." It is a consensus concept and must be carefully crafted so it is not too abstract
or granular. Some rules of thumb that may be useful:

- An application should be recognizable to a senior business manager.
- Applications should be assigned to financial management structures. They should

have clear executive ownership.
- An application usually will have been the sole product of a project, but subsequent

projects may be managed to enhance it. (Not all projects result in the creation of an
application.)

- All physical binary software components should be owned by one and only one
logical application (i.e. as a namespace).

- Databases are not necessarily owned by any one application, however.
- Applications should have a unique and distinct human readable identifier, ideally a

three or four letter acronym. All Configuration Items that are owned by the
application should be named using that identifier as a basis for a naming standard.

- The same application may have different names in the organization; therefore an
aliasing capability is essential to manage the portfolio and eliminate redundancy
while supporting legacy terminology.

- Applications in this model are specific instances. If an organization has two instances
of Oracle Financials (e.g. for two different operating companies) supported by two
different support teams, that should be two entries in the portfolio. Oracle Financials
would also have one record as a Technology Product.

- If no-one wears a pager for it, it is not an application. Applications should be part of a
Service. If an Application is not part of an identifiable Service, it might be a
Technology Product instead. For example, if an IT shop uses Websphere Application
Server for multiple different applications, Websphere itself might not be in the
application portfolio - it would be a Technology Product (possibly part of a stack) on
which Applications depend. However, if a shared Websphere service is managed as a
unitary entity with an SLA by an infrastructure team, then that should be in the
Application portfolio.

- Applications support Processes and Services (many to many). This triad of many to
manys is a complex structure and needs to be refined to reflect an organization's
culture and practices.

An Application is
a logical grouping
of software
components. It is
a consensus
concept and must
be carefully
crafted so it is not
too abstract or
granular.

All CIs owned by
the application
should be named
using its ID.

A data architecture for IT Service Management

 Page 16 Copyright © 2005 Charles T. Betz

The application portfolio is probably the most important set of Configuration Items to
baseline when an ITSM initiative is moving into the data center & production IT. Many
CMDB initiatives fail because they attempt to start with the concept of physical binary
Component, which (while it is straightforward to harvest from servers) is too granular and
hard to manage for most organizations. The logical concept of “application” provides a key
bridge between the overwhelming details of the technology and the business drivers it
supports.

A defined process must be implemented for identifying that something is to be tracked as a
formal "application." and one practice that is known to work is requiring consensus between
an enterprise architect and an IT line manager that something should be assigned an
application identifier, and included in the portfolio. Proliferation of application IDs (which
can happen if a non-architectural, technical team is allowed to assign them) is a bad practice,
as it prevents the correct rollup of IT operational data into larger hierarchies for scorecard
reporting.

Application IDs should be visible on all CIs where appropriate, in particular on Web pages
and other graphical user interfaces. There is currently a problem in the industry with
inaccurate CI identification; users do not necessarily know what application they are even in!
Firm labeling standards for all application interfaces would be a big help. This is nothing
new; on older mainframe greenscreen systems the system and screen ID would typically
appear in a corner. New distributed systems with less rigorous GUI development standards
were a step backward in this concern.

Applications have varying types. A typical taxonomy might include:

- Business Application: production, transactional, business or customer facing
- Infrastructure Application: production, not directly business/customer facing
- Decision Support Application: based on a data warehouse/enterprise reporting

infrastructure
- Desktop Application: productivity applications such as MS Office

For further information see the literature on Application Portfolio Management.

Application - Component
Applications contain Components. For accountability, all Components should be owned by
one and only one Application (although they may be used by many).

Application – Datastore
Applications are collections of processes and algorithms at their core. They are dependent in
turn on datastores such as RDBMSes or flat files. Application to data dependency is one of
the most important dependencies to maintain for CIs in the data center; many organizations
spend considerable resources continually re-analyzing this dependency. One immature
approach is to simply document the dependency of an application on a database server
(without specifying catalog or database); however, database servers are frequently large
shared assets and the database administrators need to know exactly which database is
serving an application. (This is also needed for regulatory compliance.)

The application
portfolio is
probably the most
important set of
Configuration
Items to baseline
when an ITSM
initiative is
moving into the
data center &
production IT.

A defined process
must be
implemented for
formally
identifying
"applications."

Application to data
is one of the most
important
production
dependencies to
understand.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 17

Application – Technology Product
Applications depend on Technology Products. The distinction between the two is subtle but
absolutely crucial. Bear in mind that Applications are real, running instances. People wear
pagers for applications, they figure in SLAs, may have Incidents, and so forth. Technology
Products show up on invoices and contracts, and the complete list of software Technology
Products is the Definitive Software Library.

On the relationship between Project and Application
A sign of an immature IT enablement environment is when Projects are confused with
Applications. Projects have a defined lifecycle, typically measured in months. Applications
have an indeterminate lifespan, typically measured in years. One Application is usually the
subject of multiple Projects; the first Project creates and deploys it, and subsequent projects
enhance it. It remains the same Application throughout, unless a conscious decision is
taken to manage a major new version as a distinct new Application. There are various
approaches here; the important point is that they be managed and agreed to.

The relationship between Project and Application in the model is mediated through Release:

This is a purist approach, and it may be desirable for your IT enablement tooling to simply
relate Project and Application – there’s quite a bit of value there, even if you haven’t sorted
out Release yet. For example, if an Application has a known Risk having to do with
regulatory compliance, the Project making changes should be held to high standards for
process adherence and software quality. That kind of focused emphasis is difficult to achieve
consistently without a rich and well managed IT enablement system that clearly distinguishes
between Application and Project.

Component
A Component is a physical piece of executable code. Even though it is only magnetic bits and
bytes, it is common practice to call a component “physical.” Calling it “physical” in this
context means that there is no disagreement as to what and where it is; components are non-
ambiguous assets that can generally be objectively inventoried without debate as to their
boundaries.

The use of Component here is not in a pure OO sense. In the OO world, a Component also
has a well-defined interface which encapsulates its behavior and provides an effective
contract for anyone who chooses to use it. However, Component as defined here applies to
any piece of executable code, regardless of whether it has an interface.

A sign of an
immature
environment is
when Projects are
confused with
Applications.

A Component is a
physical piece of
executable code
that can be
objectively
inventoried.

A data architecture for IT Service Management

 Page 18 Copyright © 2005 Charles T. Betz

Components inherit from Applications and therefore can be related to Datastores and Deploy
Points. However, doing dependencies at this level for the general case of a large enterprise IT
organization is usually not practical given current industry practice – the objects and their
dependencies would quickly amount to millions, and the information might not even be
available in many cases (e.g. packaged software). Instead of inventorying all the detail of
components, some configuration management approaches focus on overall integrity checks
across large blocks of storage (e.g. checksums). In such cases the Deploy Point becomes the
fundamental CI to manage.

Capturing component level dependencies is a recommended best practice for all aspects of
enterprise application integration.6

A Web Service, shared object, or other similar addressable, distinct piece of functionality in
this model is a Component – not a Service! This is quite a point of confusion due to the
overloading of the term “Service.”

Datastore
A Datastore is a distinct, addressable source of data, usually structured. The most common
examples would be database catalog and flat file; message queues may also be represented
here. A Datastore should have one and only one data definition. As a deployable object it is
directly dependent on servers and their underlying machines. Note that as a CI it can depend
on and contain other Datastores. Again, generalized CI containment is frowned on in the
model – we don’t want Datastores containing Machines!

Datastores should have data definitions, which are by definition metadata – data about the
data. The data definition tells you whether a given Datastore contains customer or supply
chain information. Metadata generally is another term for everything we represent in our data
model.7

Server/Workstation and Machine
It is crucial to have a precise definition of “server or workstation” and “machine.”
Server/workstation is an operating system instance, almost always networked. Machine is
a physical computing device which can be equated to an Asset. One Machine may host
multiple Servers (virtualization and partitioning), and one Server may be hosted by
multiple Machines (failover and load balancing). Server is the bits and the process;
Machine is the atoms and the serial number, linked in turn to the Asset tag.

The current failure of common Asset Management solutions to recognize this distinction is an
industry problem.

Deployable Object
A Deployable Object is either a physical Application or a Datastore. This based on the
fundamental computing theory distinction division between algorithms and data structures. In
modern distributed systems, both have identifiable physical locations in a directory structure
or analogous storage location.

6 See Integration Competency Center, John Schmidt and David Lyle (Informatica 2005).
7 I considered adding “Metadata” to the data model as a subtype of Document. There are some
fascinating, frustrating hall-of-mirrors issues in considering Metadata itself as a CI. Decided not to go
there.

The most well-
known example of
a Datastore would
be a relational
database.

Servers and
Machines are NOT
the same thing.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 19

Deploy Point
A Deployable Object is tied in turn to a Deploy Point, which is usually a file system directory
but might also be a management infrastructure such as a queue manager or a relational
database management system.

The concept of Deploy Point as a major type of Configuration Item is an innovation proposed
in this analysis, and comes from the author’s experience with configuration management and
supporting an Integration Competency Center. There are several major reasons for this:

- The need to identify “root” management concepts to facilitate interaction between
infrastructure and applications teams.

- The sensitivity of certain directories when used as exchange points for moving data
- The need to manage RDBMSes and message queuing managers, which don’t sit

comfortably as “Applications.”

The application root directory
A large, complex application may have dozens or hundreds of directories, in some cases
appearing and disappearing dynamically. However, it’s a best practice to constrain the
application’s scope of activity to one master directory which serves to contain the myriad of
sub-directories used by the application. This one master directory is a key interaction point
for the infrastructure team managing the server and the application team (assuming that the
IT organization has moved towards the best practice of segregating these teams and getting
the application teams out of the business of server management.)

Shared libraries complicate this arrangement, but multiple applications updating shared
libraries has been proven to be a very bad practice in Microsoft Windows, so hopefully the
root directory concept will continue to gain strength as a management approach. This touches
on core computing issues around component re-use and operating system services and
architectures, and will never be a simple matter.

The shared exchange directory
A frequent, if problematic, design pattern in integration architectures is the shared directory.
This is a directory typically in which one application deposits files, and another picks them
up for further processing or to consume their information.

The trouble with shared directories is that often the consuming application will be built with
logic that states “Do X for all files in the directory.” Thus, if an unexpected file is placed in
the directory, unexpected results may occur. (An architecture of this nature resulted in the
complete failure of the replication feed for all pricing data at a major retailer, costing many
hundreds of thousands of dollars and spurring an interest in configuration management.)

Shared directories which facilitate application interaction are therefore important points of
control and need to be treated as Configuration Items.

IT Governance entities

Service Request
A Service Request is a logged interaction between an individual and the Service Desk
requiring followup. Service Requests may have various Types such as:

Deploy Point is a
major type of
Configuration
Item.

The application
root directory is a
key interaction
point for the
infrastructure
team managing
the server and the
application team.

Shared directories
which facilitate
application
interaction are
important points
of control and
need to be treated
as Configuration
Items.

A data architecture for IT Service Management

 Page 20 Copyright © 2005 Charles T. Betz

- Hardware/Software Request
- Incident Report (i.e., the request is “Resolve this incident”)
- Configuration Change Request
- Security Request

and so forth.

A critical distinction is that between Service Request and project initiation. The service
management architects will need to pay close attention to the differences between Service
Offerings that may be straightforward products, Service Offerings that are more open-ended
(analogous to professional services or consulting), and work requests that should not be
framed as Service Requests at all but should be routed to a project initiation process.
Alternatively, one might view the gateway into the project initiation process as a Service
Request and drive to a more generalized approach.

Program
A Program is an ongoing, large-scale organizational commitment and corresponding
investment towards meeting a major goal or objective of the enterprise. A Program typically
consists of one or more Projects.8

Project
A Project is a defined set of manageable activities to achieve a well-specified mission, with
explicitly allocated resources (time, money, staff), executed and measured within the scope of
those resources. Projects may (or may not) be part of larger Programs. A Project has one or
more Releases.

(Request for) Change
A Change is a work order or authorization to alter the state of some Configuration Item.
Changes, like transactional logical units of work should be

- Atomic
- Consistent
- Isolated
- Durable

(For further information on the ACID model see any text on transaction processing.) In the
context of enterprise IT, an atomic change is “all or nothing;” either the change goes in and
succeeds, or it is rolled back completely. If a change might have some functionality that
would be rolled back, while other functionality would stay, it should actually be framed as
two changes. (Note that ITIL does allow for “partial rollback” but clearly indicates this is
non-preferred.)

A Consistent change means that the functionality, when deployed, leaves the system in a
stable state. Old functionality no longer needed by the new version of the system should be
removed as part of the change. New functionality should integrate seamlessly with the
previous functionality without undesired or unexpected impact.

8 It is possible to model higher level planning concepts such as Mission, Objective, Goal, Risk,
External Driver, and so forth. This was not attempted in this analysis.

A Change is a
work order or
authorization to
alter the state of
some
Configuration
Item.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 21

An Isolated change means (in theory) that it can go in without impacting other changes or
major system functionality. This would be very hard to achieve in all cases, but is
nevertheless something to strive for. Achieving logical isolation of changes is a goal for an
integrated release and change management process.

A Durable change is one that, once executed, is stable and permanent; all instances of the
new software in all deployment locations persist, and older software is not inadvertently re-
installed (e.g. during a system restoration process). This requires attention to the Definitive
Software Library.

Change-Release
A Release may have a number of Changes associated with it, but a Change should only apply
to one Release.

A Release usually affects multiple CIs; however, CIs can be grouped together. This is the
purpose of the CI Group, which can (at least) have types of Release Group and Technology
Stack.

Change-CI
This is perhaps the most important relationship in all of IT Service Management. Very
simply, a Change by definition affects CIs, and CIs are objects under Change Control. This is
far simpler to state and to model than to execute in the real world. A naïve approach to
implementing this concept will result in unmanageable data. Clearly, it is not optimal for a
Change record to have to be related to 1,500 individual Configuration Items, yet this is what a
simplistic approach will arrive at (e.g. in putting in an initial release of a major software
package with many separate binary assets).

There are various techniques for mitigating and simplifying this, mostly involving
encapsulation and abstraction. If a logical Application CI is defined, for example, it can be
presumed to include all lower-level physical binary changes. Whether or not to inventory
those binaries in the CMDB at all is one of the most critical approach decisions the ITSM
implementer faces. For high security organizations, this may be done, but it is questionable if
lower-criticality IS organizations truly require it, especially in a world of purchased software
where the physical architecture of a software product is less and less a concern for the
package vendor’s customers.

Alternatively, the concept of CI Group (which is also a CI) can be used. An Application plus
its Datastores and Deploy Points might be a logical CI Group. This is where the issue of
Logical versus Physical CI comes in, pointing up the importance of having a defined process
for maintaining logical Applications and other forms of CI Groups. It is not recommended to
allow individuals the ability to create high-visibility logical CIs; this results in a chaotic
environment. Everyone must agree that there is one application (e.g. Quadrex), composed of
(e.g.) these 50 components.

Change-Incident
A Change may be in response to an Incident, without going through the more formal and
heavyweight Release process. Alternatively, an Incident might be the result of a poorly
executed Change. This means that the intersection entity resolving Change-Incident should
probably have a Type attribute, so we understand which caused which.

Whether or not to
inventory all
binary software
components in the
CMDB is one of
the most critical
approach
decisions the
ITSM implementer
faces.

A data architecture for IT Service Management

 Page 22 Copyright © 2005 Charles T. Betz

Production change and the software development lifecycle
RFCs in this architecture, and the concept of Change more generally, are not applied to
project deliverables, in keeping with the ITIL philosophy that

“changes to any components that are under the control of an applications development
project - for example, applications software, documentation or procedures - do not come
under Change Management but would be subject to project Change Management
procedures…Change Management process manages Changes to the day to day operation of
the business. It is no substitute for the organisation-wide use of methods … to manage and
control projects.”

Release
Release is the gateway from the software development lifecycle into the IT Service
Management world. It is one of the most important concepts for which to develop an
enterprise approach. A Release is (narrowly defined) a distinct package of new functionality
deployed to production, usually enabling new capabilities and/or addressing known
Problems.

ITIL says “a Release should be under Change Management and may consist of any
combination of hardware, software, firmware and document CIs … The term 'Release' is used
to describe a collection of authorised Changes to an IT service.”

Releases, like Changes, should be transactional, although their larger grain makes this more
challenging.

The concept of CI Group may be helpful in supporting a Release’s various elements.

Note that Release Management as an overall capability includes the planning and
harmonization of all Releases in the environment, not just managing Releases for an
individual Project or Program (the enterprise Release Managers should interface with the
program/project Release Managers).

Event
An event is raw material. It is any operational signal emitted by any production CI. Only a
very small fraction of Events are meaningful to IT Service Management, and an even smaller
fraction result in Incidents. Events are the raw material of Measurements, which in turn drive
Agreements and Contracts.

Incident
ITIL defines Incident as “any event which is not part of the standard operation of a service
and which causes, or may cause, an interruption to, or a reduction in, the quality of that
service.” ITIL also implies that a Service Request is a type of Incident, which seems perverse
(a Service Request might be for new capability, in which case it is not an interruption unless
you are trying to build a culture of hostile customer service!) This line of thinking is not
supported in the metamodels – ITIL editors please take note.

Service Requests may be tied to Incidents via the Configuration Item against which the
Incident is reported. In this interpretation, Incidents are independent of their mode of

Release is the
gateway from the
software
development
lifecycle into the
IT Service
Management
world

Events are the raw
material of
Measurements,
which in turn drive
Agreements and
Contracts.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 23

detection; this is necessary to support Incidents that may be detected through enterprise
monitoring without ever being reported through the centralized Service Desk.

To refine this further, it seems that an Incident has to also be experienced by a person. (If a
tree falls…). This distinguishes it from the Known Error concept used for knowledge
management for the help/service desk (an Error being a known condition in the abstract).

A Service Request may be in respect to an Incident. Incidents (especially when generated
from monitoring tools) often require correlation and root cause analysis, which are supported
through the recursive relationships9 relating Incidents and Events to each other.

Problem and Known Error
In ITIL, a Problem is “the unknown underlying cause of one or more Incidents” while a
Known Error is “a Problem that is successfully diagnosed and for which a Work-around is
known.” However, this leaves a rather large hole for problems with known underlying causes
that nevertheless have no workaround, so the ITIL spec won’t do as a data definition. A
Problem is generally a (known or unknown) root cause of many Incidents, although in the
current model it is possible for an Incident to be caused by several Problems as well.10

ITIL further states that “A Problem can result in multiple Incidents, and it is possible that the
Problem will not be diagnosed until several Incidents have occurred, over a period of time.
Handling Problems is quite different from handling Incidents and is therefore covered by the
Problem Management process.”

Problem – Release and Problem – RFC
Problems may be addressed by Releases, which might solve multiple Problems. An
individual problem might also be addressed by one or several RFCs. It is a possible best
practice that Problems are generally handled by Releases, while Incidents are handled directly
by RFCs. Ideally, an RFC should be able to reference both Incidents (tactical) and Problems
(longer-term). This will depend on the capabilities of Incident Management and its degree of
integration with Problem and Change.

Risk
A Risk is a known possibility of adverse events, usually described by 1) likelihood of
happening and 2) cost of occurrence. Risks are best seen as directly applying to CIs; a
deficiency of modern risk management software is that it is often designed in a vacuum, with
the risk management team entering their own representations of configuration items such as
Application and Process, and not looking to a common system of record for this critical
reference data.

9 See below for detailed discussion on recursive relationships.
10 Comments appreciated: should the model restrict Incidents to only having one Problem?

Problems may be
addressed by
Releases, which
might solve
multiple Problems.

A data architecture for IT Service Management

 Page 24 Copyright © 2005 Charles T. Betz

Cross cutting data architecture issues

Metadata, or IT configuration management data (this architecture sees them as synonymous)
presents unique problems compared to the data that IT manages on behalf of its partners.
Financial, logistics, and HR data has deep roots in paper-based history; a purchase order or
hiring authorization message can be traced directly back to its roots in the forms once routed
by interoffice mail to in baskets throughout pre-electronic corporations.

Recursive relationships
The “recursive relationship” is a common occurrence when managing IT data.

When one looks at a sales journal, or a stack of purchase orders, one generally sees
consistency: the data model is the same for all the information.

 The data also has limited interconnections. A purchase order may reference common
employee lookup tables and product tables, resulting in data models that are relatively
straightforward to understand:

IT configuration
management data
(or metadata)
presents unique
problems
compared to the
data that IT
manages on
behalf of its
partners.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 25

With metadata, everything gets much more complex. Data metadata is the most tractable;
tables (or entities) have columns (or attributes) and therefore building simple data dictionaries
is straightforward. But when one moves beyond this into technical metadata (i.e.
configuration management) the data starts to take on new characteristics. In mathematical
terms, it becomes graph-based; that is, it looks like this:

This kind of data presents well-known problems in storage, querying, and presentation, as it
requires "any to any" data models and can rapidly become complex to the point of
incomprehensibility.

This kind of data is not typically encountered in business-centric systems that are the
successors to forms-based paper processes. It is the kind of data stored by configuration
management databases and metadata repositories when they move into managing technical
metadata such as interconnections between network devices, integration flows, and so forth.

The recursive relationship enables complex data. This is a relationship when one type of
thing can be connected to other instances of the same thing. There are two major types of
recursive relationship:

- tree
- network

The tree relationship is a relationship where one thing “contains” other things. A taxonomy is
a tree; so is a hierarchy. Common examples of trees in IT Service Management are
Configuration Items containing other CIs; organization hierarchies; process steps
decomposing into finer grained activities and tasks, and so on. Here is how a tree often looks:

Notice how it is always possible to say that one box owns and/or is owned by others. A tree
can be recognized in a data model by the following notation:

Graph data can
rapidly become
complex to the
point of incom-
prehensibility.

A data architecture for IT Service Management

 Page 26 Copyright © 2005 Charles T. Betz

While simpler than networks, trees can be troublesome to report on if they are of
indeterminate depths; that is, if one branch of the tree is 5 levels deep and the other is only 3,
it’s hard to get a consistent, sensible report. A common strategy of data architects when
dealing with tree-like structures is to fix the levels and establish that all branches of the tree
have the same number of levels:

but this in turn may have problems in dealing with the real world – what if the organization
(or whatever) is just not structured that way? In fact, organizations may actually decide to
structure themselves, and adapt their business processes, to fixed level hierarchies, as we see
in retail organizations with their typical store-district-region hierarchies.

A network is characterized by things that are related to other things, not necessarily
containing. A diagram of a redundant wide area network, an org chart with “dotted-line”
relationships, or a mapping of how systems interrelate, would probably be a network. Here is
how a network often looks:

While there are tree-like structures in it, the key difference is that it is no longer possible to
say that one box owns or is owned by others. A network can be recognized in a data model by
the following notation:

This is also often called the “any to any” relationship.

Trees and networks make IT service management data much harder to deal with, compared to
sales or financial data. Why is this? Let’s start with a picture of my son:

A common
strategy of data
architects when
dealing with tree-
like structures is
to fix the number
of levels.

A network is
characterized by
things that are
related to other
things

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 27

.

Thanks, yes I know he's cute. He's a happy boy :-). What I want to draw your attention to is
the Skwish™ toy he's holding.

Now, regular business data is like a deck of cards:

You can say,

"Show me all the red cards between 3 and 8"
"Show me all the jacks"
"Show me all the hearts and spades"

A data architecture for IT Service Management

 Page 28 Copyright © 2005 Charles T. Betz

and it's a pretty simple problem. The hearts don't have much to do with the spades, and there's
not a lot of ambiguity.

The Skwish toy represents interconnected data. It's troublesome. You can say, "show me a
small red sphere," but what if you say "show me everything connected to the small red
spere"? What do you mean by that? The whole toy? Or just things immediately connected to
the red sphere? By elastic? By wood? Where do you draw the line?

What does this have to do with reporting for ERP for IT (and IT service management)? Much
reporting is of the deck-of-cards variety. You can handle this with the same tools your
business users use: relational databases and reporting/BI tools such as Crystal, Brio,
Microstrategy, Actuate, and others.

Using these well-established techniques, I can answer all of the following questions
(assuming the data is consolidated into a data mart):

- What services do I have?
- Have I met my service levels for a service?
- What is the history of changes associated with a configuration item?
- How many projects do I have running right now?
- What projects contributed to building this system, and what did they cost?
- What does this system cost to run?

But those tools don't handle reporting on interconnections. With relational databases and
query tools, it's very hard to answer the following questions:

- What is this service dependent on (other services, applications, hardware, network)?
- What depends on this infrastructure piece, directly or indirectly?
- Is the project on schedule? On budget? (Requires traversing an unknown number of

project tasks and subtasks – obviously, project management tools do it, but an end
user is hard pressed to deal with this data in raw form.)

- For a project, what tasks are on the critical path? (Ditto.)
- What is the complete lineage of this data item in this report? Where did it come from,

what systems did it flow through? (A very important compliance issue.)
- What are all the downstream destinations for this data element? What middleware

infrastructure does it flow across? (Important security questions.)

Basically, if you have language like "direct or indirect dependency" in a requirements spec,
you probably are into the Skwish type (tree or network) problem. The problem is that while
the theorists have been kicking this around for a while, no standard approaching SQL has
been implemented across multiple platforms.11

Recursive relationships in the data model
The recursive relationship can easily be abused, and enable nonsensical connections. One of
the major problems with the Configuration Item concept as framed by ITIL is that it calls for
any-to-any relationships between CIs generally. (Actually, it calls for both the “contains” and
“uses” relationships for any CIs.) However, some connections don’t make sense. For

11 See Oracle’s CONNECT BY operator

What if you say
"show me
everything
connected to the
small red spere"?
What do you mean
by that? The
whole toy? Or just
things
immediately
connected to the
red sphere? By
elastic? By wood?

Relational
databases and
query tools don’t
handle
interconnected
data very well.

The recursive
relationship can
easily be abused,
and enable
nonsensical
connections.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 29

example, a cell phone should not “use” a database trigger, and a RAM chip would have
nothing to do with an XML Schema – yet some configuration management tools allow the
end user to put in such relationships. Being more precise is why we go to the trouble of
building our data model – in an “any to any” world, you don’t need a data model’s specific
lines, because anything can be hooked to anything.

It is usually the case though that any configuration item of a given type can both use and
contain other objects of the same type, especially in a high level conceptual data model such
as this.

For example, a server might contain hard drives; both would be types of machine. A machine
might be connected to other machines via a network. A process can both contain and depend
on other processes. Datastores contain other Datastores, and with mechanisms like linked
databases also may depend without owning. A Deploy Point (i.e. a file system directory) can
certainly contain other Deploy Points, and through mechanisms like directory linking
(common in Unix) can also depend on them without owning.

And finally, it’s also the case that the IT world is not well understood, and new dependencies
present themselves. Therefore, it’s OK if the configuration management tool allows the any-
to-any relationship as a managed, controlled administrative option. It’s important to be
clear on how this differs from bad practice CMDB tools: in the recommended approach, an
administrator can decide that “well, we do need to track a dependency between XML
Schemas and RAM chips.” They specifically allow just this additional dependency to be
permitted by the tool and created by end users. In a poorly engineered tool, the user gets to
decide what gets related to what. That is a recipe for chaos.

Role management

�����

����	 �
����

��

�������
�

�����

The core data model has no roles or people in it. This is deliberate. Organizational
approaches to managing the processes and their data will vary, titles will change, and in
general the human organization will be more fluid than the core ITSM and metadata
concepts. Therefore, the role structure is generalized; Parties (Persons or Groups composed of
other Parties) have Roles with respect to any Entity in the model.

Party/Person/Group
A Party is either a Group or a Person; Persons are members of Groups and Groups can
contain other Groups. The following are all Parties:

� Oracle Incorporated

It’s OK if the
configuration
management tool
allows the any-to-
any relationship
as a controlled
administrative
option.

The human
organization will
be more fluid than
the core ITSM and
metadata
concepts.

A data architecture for IT Service Management

 Page 30 Copyright © 2005 Charles T. Betz

� Bill Smith
� Support group APPL-2-CNS
� IT Service Management Forum

Party is a controversial concept in data modeling, as business users do not understand it. They
understand concepts like “administrator” or “steward.” However, these are roles. (These are
very well understood issues in data modeling.)

Roles

Here are some example role types and the entities they might interact with. Note that ITIL
does go into some depth around this, so it doesn’t include an exhaustive survey.

Role Entity Notes
Requester Service Request

(as related to
Service Offering
or Service)

A Requester can request a new instance of a
Service Offering (which becomes a new
Service), or request a change to an existing
Service.

Support Group Usually
Application

A Support Group would usually be a Group that
is associated with one or more Applications.
Sometimes, a Support Group might be
associated with a Technology Product (for
example, a Windows Engineering group).

Release Manager Project, Release,
Change

A Release Manager is responsible for
coordinating the output of a Project into
Releases to be accepted into production.

Change Coordinator Change A Change Coordinator is responsible for the
successful execution of one or more Changes.
They may be part of a specific capability team,
or part of an enterprise change team.

Operational Change
Approval Group

Operational CIs An Operational Change Approval group is often
seen as a dynamic entity, composed of
representatives from the Support Groups that are
associated with the CIs in question, as well as
overall change coordination from a central
enterprise group. Frequently, the Change
Approval group may have standing
representation from major Technology Product
areas (e.g. Unix engineering, network
engineering, etc) or other operational
capabilities (e.g. Security)

Here is a common role type that may be problematic:
Change Approver Any CI ITIL calls for just a Change Approval Board.

However, different CIs have different
stakeholders. A better practice is to allow
flexibility in the definition of the acting CAB
(here called a Group) by CI. This however will
require more maintenance.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 31

For example, if a Contract is a CI, it should be
under change control, but the change approvers
would be the senior IT executives, the Contract
Office, and Legal – your engineers would not be
involved. The better understood use of Change
Approver is with respect to Production CIs.

Intersection entities
This is a high level conceptual data model. Most of the relationships are of the “many to
many” type. For example, an Application may use many Datastores, and a Datastore may be
used by many Applications:

In order to actually turn these language concepts into an operable system, an intersection
entity is required:

If you look at the main data model and imagine all the many to manys being elaborated with
their intersection entities, you’ll see that it would be far too complex to represent as one
diagram. That’s the beauty of a well-scoped conceptual data model; it should be able to
represent a substantial problem domain on one page.

The intersection entities are where the devil emerges from the details. For example, it is likely
your database administration team has a list (at least a spreadsheet) of all their databases.
Perhaps you have an application management group with their own spreadsheet. Therefore
you might be able to say that you can populate the Application and Datastore entities. But
who is responsible for the relationship, as represented by the Application/Datastore entity?
Questions of this nature permeate the problem of configuration management. As a defined
entity, documented processes are required for the creation, reading, updating, and deleting of
data in the Application/Datastore entity. Would it be your application team? Your DBA
team? A separate team of configuration analysts?

The current state of most IT organizations is much less formal. What we often see is
uncoordinated spreadsheets.

The intersection
entities are where
the devil emerges
from the details.

The intersection
entities are where
the devil emerges
from the details.

A data architecture for IT Service Management

 Page 32 Copyright © 2005 Charles T. Betz

Chris: What’s so bad about people maintaining their own spreadsheets?

Kelly: Well, let’s look at your organization. Here are some extracts from spreadsheets
maintained by your application support, database, and server teams:

Server team:
Server name Notes

WNAPPL01 Supports FirstTime and X-time Batch.

FRED ?

UXPLV01 PLV server. See Scott Armstrong.

WINWEB03 External Web server

UNXDB001 PLV databases

WINDB2 SQL Server

TXEMLA Email server

QDXAPP02 Quadrex App Server

Applications team:

Servers Databases

Quadrex
QDXAPP02
UNXDB001 Oracle

X-Time WNAPPL01 SQL Server

PLV
UXPLV01
UNXDB001 Oracle

Database team:
Database Server App
PDBX01 UNXDB001 Qaudrex
LVDBX01 UNXDB001 PLV/X-time
ARGDBX02 WINDB2 Argent
GDBX01 WINDB2 GuardSys

Chris: Ouch. This data makes my head hurt.

Kelly: Well, stick with me. There are some serious issues here. Let’s focus on Quadrex. The
server team knows that Quadrex uses QDXAPP02 as an application server, but doesn’t seem
to realize that Quadrex also uses UNXDB001 through its use of the PDBX01 database.

The application team knows that Quadrex is using QDXAPP02, and UNXDB001, but doesn’t
have the level of detail that the DBAs do, that Quadrex is using specifically the PDBX01
database on that server. Quadrex does not own that server – the PLV team is also using it.
This is important from a cost allocation and support impact standpoint.

Chris: Actually, no application team “owns” their server according to our VP for systems
engineering, even if that server is currently allocated 100% to them. But some of them
haven’t quite bought into that point of view…

Kelly: Right… Common argument nowadays! Finally, the database team knows that Quadrex
is using the PDBX01 database on UNXDB001 – but isn’t tracking Quadrex’s use of
QDXAPP02, as that is an application server that they don’t manage. Finally, notice that
someone fumble fingered the Quadrex name on the first row of the DBA spreadsheet,

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 33

misspelling it “Qaudrex.” This means that when we go to consolidate all this data into one
database, we’re going to have manually identify and clean that up.

Chris: Why didn’t the DBAs pick from a list of application names?

Kelly: Has that list been shared with them? Do they agree with how those applications are
represented? Is there confidence in the process for keeping the list up to date? (For that
matter, is there even a process?!) Do they have a technical approach on how they can
leverage that list? It can be done in Excel, but you start to get into advanced features – too far
down that road and you’re looking at needing a real database-based system.

The same issues need to be thought through for every many to many relationship:

� Event/Incident/Problem
� Applicaton/Technology Product
� Application/Process
� Change/CI
� Change/Incident

And so forth. The complexities of doing this are why vendor products are recommended, but
it’s not impossible to build your own.

This is also the most critical area to review the vendor product – a frequent vendor mistake is
to put in a one to many where a many to many is required! For example, a Problem might be
addressed by several Releases, but your problem management tool only allows you to
identify one Release that fixes it. Or a Datastore may be shared by many Applications, but a
configuration management tool only allows you to identify it with one. These are the kinds of
details that are critical to review in assessing any vendor product – and it all starts with
having good, specific, clear requirements for what you need to track and how it needs to
relate. Even if you’re buying a vendor product, the data model is needed.

Process and workflow
In this data centric presentation, we haven’t talked a lot about workflow and process. Let’s
turn to these from the data perspective:

The CRUD matrix: an old standby
A very well known technique for understanding data’s relationship to process is the
unfortunately named CRUD matrix. CRUD stands for

� Create
� Read
� Update
� Delete

A simpler version is a Create/Use matrix, whis is what is presented here.

The CRUD, or
Create/Use matrix,
tells us the
relationship
between data and
process.

A data architecture for IT Service Management

 Page 34 Copyright © 2005 Charles T. Betz

Creating such a matrix is a key reason for doing a conceptual data model. With the data on
one axis, and the processes on the other axis, the intersections are used for understanding how
the data and process relate:

D
em

an
d

M
an

ag
em

en
t

P
ro

je
ct

 P
or

tfo
lio

 M
an

ag
em

en
t

A
pp

lic
at

io
n

P
or

tfo
lio

 M
an

ag
em

en
t

R
is

k
M

an
ag

em
en

t

C
on

tra
ct

or
 M

an
ag

em
en

t

A
ss

et
 M

an
ag

em
en

t

V
en

do
r T

ec
hn

ol
og

y
P

ro
du

ct
 M

an
ag

em
en

t

P
ro

je
ct

 In
iti

at
io

n

S
ys

te
m

 R
eq

ui
re

m
en

ts

S
ys

te
m

 In
te

gr
at

io
n

S
ys

te
m

 A
na

ly
si

s

S
ys

te
m

 D
es

ig
n

S
ys

te
m

 B
ui

ld
/In

te
gr

at
e

S
ys

te
m

 R
el

ea
se

In
ci

de
nt

 M
an

ag
em

en
t

P
ro

bl
em

 M
an

ag
em

en
t

C
on

fig
ur

at
io

n
M

an
ag

em
en

t

C
ha

ng
e

M
an

ag
em

en
t

R
el

ea
se

 M
an

ag
em

en
t

S
er

vi
ce

 L
ev

el
 M

an
ag

em
en

t

Fi
na

nc
ia

l M
an

ag
em

en
t f

or
 IT

C
ap

ac
ity

 M
an

ag
em

en
t

C
on

tin
ui

ty
 M

an
ag

em
en

t

A
va

ila
bi

lit
y

M
an

ag
em

en
t

S
er

vi
ce

 R
eq

ue
st

 M
an

ag
em

en
t

(H
el

p
D

es
k)

Program C U U U U U U U U
Project C U U U U U U U
Release C U
Problem U U U C U
Risk U C U U U U U U U U U U U
RFC U C C U U U U
Incident C U C
Service Request U U C
Event U C
Known Error U C U
Service Offering C U U U U C
Service U U U C
Technology Product U C U U U U U U
Process C U C U U U C U U U U U U U U U U
Application U U C U
Component C U U U U U U U U
Deploy Point U C U U U U U U U U U
Server/Workstation U U U U C U U U U U U U U U U U
Machine C U U U U U U U
Datastore U U U C U U U U U U U U U U U U
Asset U C U U U U
CI Group C C C U C U U
Measurement U C
Agreement U C
Contract U U U U C U C U U U U C U U U U
Document C

Processes

Portfolio Management
System

 development ITSM/ITIL
E

nt
iti

es

This Create/Use matrix is presented as a starting reference model. There’s lots of interesting
questions generated by such a matrix; the cells highlighted in gray show some of these:

Is a Problem created in the Incident process or is it created in the Problem process (Incident
Management refers one or more Incidents to Problem for further analysis, but Problem makes
the call as to whether to create a new Problem record.)

An RFC can be created by the Release Manager in the System Development process, or by
some team attempting to respond to an Incident – when an Entity can be created by more than
one Process, this deserves special attention. Ditto for Service Offering, Process, and Contract.
Contracts might be created as the result of outsourcing service agreements, for vendor
product purchases, or between the IT organization and its clients – three different origination
processes.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 35

Notice how many processes use the Application entity! This is typically one of the most
poorly-managed entities in all of IT governance.

Measurement and Agreement look like very weak entities; they are subsidiaries of Contract
and are not widely used by other processes. To make the conceptual model cleaner, we might
consider removing them entirely.

A Document can be created by any of the process areas – and when this is true, the value of
having the entity in the CRUD matrix becomes questionable.

These weaknesses are purposefully left in for demonstration purposes; one objective of this
document is to enable the reader to build their own analysis.

Workflow

Entity lifecycles and audit trails

One requirement for IT enablement tooling in general is rigorous tracking of all changes to
any entity: who changed what, when. There are a surprising number of tools that do not do
this, and should be ruled out as possible product choices for any enterprise. Technical terms
will be effective dating and audit trail (if your vendor gives a blank stare when you mention
these, look elsewhere).

Businss process meets the entity through these techniques, especially when audit trails are
collected on the changing roles and responsibilities for an entity (see the Role Management
section above). A trail of who “owns” an incident and where it has been referred is a key
feature of most incident management tools; this is a specific example of the general principles
here. Effective dating of status changes is (in part) how SLAs are monitored for things like
Incident, Service Request and Problem resolution.

Similarly, IT enablement tooling should manage audit trails on other entities and their role
assignments:

� Who have the Application Managers been for this Application?
� What Projects have built upon this Application? Who has been on them?
� Who has approved this Change?

Reporting
One criteria for evaluating IT enablement tooling is the quantity and quality of reporting
available. Some reports that should be available with push-button ease from an integrated
(ERP-like) IT management system would be:

Operational reports
� Applications using Datastores and Servers
� RFCs and their Configuration Items
� Projects affecting an Application
� Changes planned for a given Release
� Releases affecting mission-critical (i.e. Risk-identified) systems

Effective dating of
status changes is
how SLAs are
monitored for
things like
Incident, Service
Request and
Problem
resolution.

A data architecture for IT Service Management

 Page 36 Copyright © 2005 Charles T. Betz

� Application Dependencies on Technology Products
� Applications accessing Confidential (i.e. Risk-identified) Databases on Servers
� Applications and their Stakeholders
� Incidents resulting in Problems
� Problems by Application
� Problems by Application, correlated to Project Release (Quality Assurance report)
� Average Time to Resolution of Service Requests
� First Call Resolution for Service Requests
� Servers due for Lease Refresh, Dependent Applications, and Owners
� Applications dependent on other Applications
� Services and their Dependencies
� Application Transmission of Data to other Applications
� Data Definitions for Datastores
� Services dependent on External Providers
� External Connections due for Stakeholder Validation
� Total Cost of Acquisition for Application
� Allocated Infrastructure Cost for Application

Exception reports
Exception reports are critical checks on processes via analysis of data quality; they often are a
metric indicating process success.

� Service Request/Incident/Problem aging over X days
� Applications with no known Stakeholders
� Applications/Services with no known Supporting Dependencies
� Servers with no known Applications
� Servers with no known Machine

These are only examples – a robust integrated IT enablement capability will have hundreds of
reports.

Complex dependency capture

The core of configuration management
The following entities are perhaps the core of production configuration management:

Exception reports
are critical checks
on processes;
they often are the
key metric
defining process
success.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 37

There are many variations and refinements on this basic problem area, for example the
DMTF has extensive specifications and large parts of the OMG’s modeling languages also
cover it. The Fundamentals of Integration Metadata series on the www.erp4it.com site goes
into great detail on enterprise application integration configuration management.

A typical pattern in many organizations is for this data to be very fragmented, into small,
incomplete spreadsheets and databases. Often, there is no defined process for keeping these
data sets up to date, and each point solution takes a particular point view at the expense of
related data. (See the story in the Intersection Entities section above.)

Centralized attempts to maintain this data have proven ineffective as well. There are three
major areas that historically have attempted this mission:

� Metadata management (the oldest)
� Enterprise Architecture
� Configuration Management (most recent)

The trouble in all of these cases starts when a centralized team attempts the data maintenance,
with little or no distribution of process steps and (often) no defined process at all. History has
not been kind to such attempts, which usually wind up abandoned.

It is therefore critical to distribute the maintenance of complex system dependencies to the
application and support teams. This is not as hard as it sounds:

First, it is not generally recognized in the IT service management discussions that complex
system dependencies are carefully mapped by development teams. The problem is that these
mappings are too often done in a format (e.g PowerPoint or Visio) that cannot be consumed
by a configuration management capability. This is simply a matter of standardization and tool
alignment. (See the Model Driven Configuration Management article on www.erp4it.com.)

Second, an elegant closed-loop process with mutual incentives can be defined between the
application and engineering teams. Most organizations have split server (data center)
engineering and operations from the application development and maintenance teams; this is
increasingly required to meet audit objectives regarding separation of concerns. The data
center team is often hard pressed to understand the dependencies on a given device (the
classic “Can of Coke” problem – if I spill one on a machine, what business process is
affected?) This leads to continuous issues when servers need to be patched for cross-cutting
system reasons (e.g. anti-virus measures), or when 20% of the servers in a data center must be
retired for lease refresh reasons.

The application teams find themselves reacting to unplanned outages, reboots, and having to
scramble because a server must be decommissioned. Neither side in this equation is particular
happy with the other.

The solution (which has been seen to work) is to require the application team to document
their dependency on the server. The understanding must be that if the application team does
this, it will be notified of server impacts. If it does not do this, the application team has no
expectation of notification. Since application teams are generally more customer-facing than
the engineering/data center teams, they have the higher incentive to do this.

Central
maintenance of
complex
dependencies
usually fails.

A data architecture for IT Service Management

 Page 38 Copyright © 2005 Charles T. Betz

A note on discovery
Tools have always existed that can inspect an IT processing environment and analyze the
inventory of programs, files, processes, and the like. These tools are becoming an important
point of discussion as Configuration Management becomes more mature. Too often,
however, they are presented as a “silver bullet.” The trouble with relying on discovery is that
(even at its best) it can only tell you what is there – not whether it should be there. (Just like
your bank statement – it tells you what the transactions were, but did you intend them?)

A major capability any discovery tool requires for relevance in enterprise IT is the concept of
fingerprinting or footprinting. This is an ability to infer from the presence of some physical
component that a logical application dependency exists. For example, if we see the
executable file qdx.exe on a server, we can infer that the logical application Quadrex is
dependent on this server. (However, it cannot answer the question whether Quadrex should
be there.)

Footprints must be maintained – if a new Quadrex module consisting of newly-named
executables is deployed, the discovery system’s database will need updating. This needs to
have an explicit process step, probably as part of the overall Release process.

Finally, discovery tools are limited in their ability to detect application to application data
transfers, which are some of the most critical dependencies in a large enterprise. Due to the
wide variety of means via which application data can be transferred, no discovery tool yet
exists that can comprehensively map all the different flows: FTP, file shares, middleware,
ETL, EAI, Web services, shared databases, and so forth. Files renamed en route, parameter-
driven EAI adapter architectures, dynamic binding of process to data resources, and similar
challenges make this an extremely difficult configuration management challenge; for further
information, see the Fundamentals of Integration Metadata series on www.erp4it.com.

It should however be a goal for the enterprise’s technical architects to specify an integration
architecture that is as transparent as possible, so that this notorious problem becomes easier to
manage. Providing greater visibility here is one of the key justifications for centralizing an
enterprise Integration Competency Center.

The trouble with
relying on
discovery is that it
can only tell you
what is there – not
whether it should
be there.

A data architecture for IT Service Management

Copyright © 2005 Charles T. Betz Page 39

Final issues/open loops

This model attempts to handle both workstation/desktop computing and data center
computing in one. I question whether they should be completely separated.

The model does not go into the higher levels of IT governance (Mission, Objective, Strategy,
External Influence, Risk).

The model does not cover financial data explicitly. (The mapping of Application into the
enterprise’s financial structures is a key enabler.)

A data architecture for IT Service Management

 Page 40 Copyright © 2005 Charles T. Betz

Acknowledgements
Many people have helped me understand this complex problem domain. In particular many
insights have come from interactions with Chris Capadouca, Pete Rivett, Curt Abraham, and
Doug Jackson. Apologies if I have overlooked anyone else!

Intellectual property notes
Copyright © 2005, Charles Thomas Betz. All rights reserved.

This material is entirely owned by Charles Thomas Betz. It was either developed before July
2004, or after June 2005. It has been entirely written on my own time and (unless attributed)
no text or figure has been directly copied from any other fixed form. No text or figure under
any circumstance has been extracted from proprietary, unpublished work products
(mine or others’) for any employers. Terms of art, common turns of phrase, basic
conceptual structures, and the like are emergent properties of the language and industry
practice. This material will thus unavoidably have similarities to other industry artifacts;
however, all has been re-considered, re-authored and re-presented in a new fixed form.

Substantial care has been taken to present this material in a highly generic form, applicable to
all IT organizations in all industries, and from which no inferences can be made about the
particulars of my employment situations.

“Employees cannot be compelled to ‘wipe clean the slate of their memories.’”

Moss, Adams & Co. v. Shilling, 179 Cal. App. 3d 124, 129 (1986)

